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Chapter 1

Introduction

Since the inception of computer technology researchers have been trying to bring
their machines to life. This inclination emerges quite naturally from the observation
that computer machines are capable of performing many logical operations each
second. The ability to harness this power to make creative and thoughtful decisions,
similar to how the brain operates, would lead to extremely powerful technology.

The fantasy to attribute intelligent characteristics to inanimate objects far pre-
cedes information technology. Early examples can be found in Greek myths in the
form of the bronze robot Talos, the fire-stealing Prometheus and fembot Pandora.
Although mythological figures, it is argued that these ancient robots were not de-
scribed as being brought to life by the gods; rather, they were created with methods
and materials accessible to mankind much like their contemporary nonfiction equiv-
alents [1].

Modern day ideas about artificial intelligence have escaped the realms of myths
and fantasy. Applications are widespread, ranging from facial recognition technology
and disease prediction in healthcare [2] to automated driving, movement in robotics
and language processing [3]. Moreover, contemporary AI research is aimed at coming
up with more general solutions that show human performance on a wide range of
problems, instead of highly specialized tasks such as the recognition of handwritten
digits. These more high-level and generally applicable AI algorithms are called strong
AI. The transformation from weak to strong AI requires an evolution towards a
more abstract form of intelligence technology. A preliminary demonstration of such
intelligence is the autonomous development of strategies in games with many degrees
of freedom [4].

It may be tempting to interpret the weak to strong AI transition as purely a
software problem. However, software not being a match for natural intelligence is
not the only problem. Hardware is also not up to par with the brain in terms of
parallelism and power consumption. Simulating the brain with a simplified neuronal
model has been done with conventional hardware at a rate of 1500s per 1s of brain
activity [5]. This required 12GW of power: a gap of twelve orders of magnitude
compared to the 20W of a human brain.

This brings up another facet. New hardware solutions are not only needed for
powerful AI: they are also urgently needed in order to reduce the global ICT power
consumption. Today, the CO2 carbon footprint of the entire ICT ecosystem is
equal to the footprint of the aviation industry. In 2030, ICT power consumption is
forecasted to be responsible for 10%− 20% of global energy use [6].
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One approach to energy efficient hardware is parting ways with the prevailing
von Neumann architecture, which dictates that information processing and storage
are handled separately. Straying away from this information technology paradigm
has been popularized by neuromorphic computing research. A recent notable effort
in this regard is the development of neuromorphic chips such as Loihi [7]. Interest-
ingly, reducing ICT power consumption is not necessarily purely hardware-driven:
machine learning can be employed to e.g. increase cooling efficiency of data centres
significantly [8].

In order to make computing technology smarter and more efficient, a new ap-
proach to software as well as hardware is clearly needed. Quantum computing is a
strong contender to fulfil this role. At variance with the classical world, quantum
descriptions of a physical system are inherently probabilistic, famously illustrated
by the Schrödinger’s cat Gedankenexperiment. Moreover, quantum systems exhibit
entanglement. Entanglement induces quantum correlations that have no classical
equivalent. Naturally, these phenomena open doors to capture, transmit and re-
ceive information in different (and sometimes more time- and energy efficient) ways.
The power of quantum algorithms is particularly clear when they directly translate
intractable classical problems to tractable quantum problems. Shor’s prime factor-
ization algorithm [9] is perhaps the most tangible example of such a translation.

Oftentimes, the added value of quantum physics in machine learning is more
subtle. In these cases, one is aimed at quantum usefulness rather than supremacy.
While not directly solving a classical intractibility, the Quantum Boltzmann machine
(QBM ) provides a rich probability model due to its quantum features. In some
cases, these quantum characteristics are a necessity in order to accurately learn a
(classical) probability distribution. Moreover, it allows one to perform quantum
tomography on mixed quantum states. The QBM (published by M. Amin in 2018
[10]) is a quantum extension of the classical Boltzmann machine. This thesis is
centred around this particular quantum algorithm. A background of the physical
theory relevant to this Quantum Machine Learning (QML) invention is given in
chapter 2. Fundamental to QML in general is the probabilistic qubit as replacement
for the deterministic bit. Qubits are the basic units of information in quantum
computers. They are experimentally implemented by spin-1

2
particles and other

two-level systems. Some hallmark quantum spin systems are described in chapter 3.
The QBM is laid out in chapter 5.

In physics, theory and experiment are often out of sync. This is no different in
quantum computing, where the imagination of theoreticians is often at odds with
experimental limits. An important factor in this regard is quantum decoherence due
to imperfect isolation of a quantum system with respect to its environment. For this
reason, quantum machine learning is often performed on classical hardware, merely
simulating perfect quantum behaviours.

The quasi-quantum approximative approach has its pitfalls, since it inherently
relies on classically feasible projections of an exponentially scaling quantum state
space. Training the Quantum Boltzmann Machine involves inferring spin expec-
tation values for randomly connected spin systems. Determining exact quantum
correlations of a spin system without quantum hardware requires exact diagonal-
ization of the Hamiltonian. For qubit systems larger than 30 spins this becomes
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intractable on conventional hardware1. Due to the lack of capacity to represent the
entire state space, sampling becomes an inevitability for systems of this size. To
this end, the popular Markov Chain Monte Carlo sampling method is described in
chapter 4.

Spin expectation values of QBM systems can be approximated by their ground
state statistics in the zero-temperature (or large spectral gap) limit. This opens
the way for variational ground state methods. Although variational schemes have
been implemented succesfully on quantum hardware [12][13], they are currently only
implemented for small systems. Therefore, we approach this classical intractability
with the Neural Quantum State (NQS ) algorithm. This variational algorithm (pub-
lished by G. Carleo and M. Troyer in 2017 [14]) provides an efficient way to learn a
neural network embedding of a quantum state, given a Hamiltonian. Subsequently,
this representation can be used to efficiently sample spin correlations. This is where
the QBM and NQS algorithms meet each other. The NQS is described and tested
on a variety of models in chapter 6 with its application to the QBM in mind.

Quantum Machine Learning is a bidirectional field of research. It entails the
usage of quantum physics to the benefit of machine learning and vice versa, demon-
strated by the QBM and NQS respectively. The QBM has the potential to be an
extremely useful and widely applicable resource for scientific research in order to
model large real-life data sets with complex structures. Implemented on quantum
hardware, it allows learning a probability distribution by direct measurement in-
stead of sampling. For quantum physics in particular the QBM provides a means to
determine or model the quantum state from measurements; a solution to one of the
greatest challenges in this field. Solving the intractability problem of the QBM with
the NQS would therefore be of great scientific relevance. This leads to the research
question of this thesis:

“Can the Neural Quantum State algorithm be used to train the
quantum probabilistic model of the Quantum Boltzmann Machine?”

1.1 Software

The used software to learn NQS’s and train QBMs was written in Julia [15]. The
NQS software has been compiled in the open source package NeuralQuantumState.jl
[16] and can be added from any Julia (v1) REPL.

1For systems with large amounts of symmetries, the effective Hilbert space is reduced. Using
functional matrix representations in addition to these symmetries allows diagonalization up to 50
spins [11].



Chapter 2

Density Matrices

Probability has many faces in the context of quantum physics. On the one hand we
have classical probability descriptions of systems, such as the Boltzmann distribu-
tion for classical ensembles, while on the other hand we have probability amplitudes
describing quantum superpositions of states. Moreover, there is a classical interpre-
tation of quantum probability according to Born’s rule. In order to keep track of
both classical and quantum probability information of a system, an all-encompassing
description is needed. This description is given by density operator theory [17][18].

2.1 Pure and mixed quantum systems

Consider an ensemble consisting of a statistical mixture of N subsystems. Each
subsystem is described by a (normalized) wavefunction |ψi〉, i = 1, . . . , N . The sub-
systems are not necessarily described by orthogonal states: in general 〈ψi|ψj〉 6= 0.
A simple example of this is a statistical mixture of three two-level systems described
by the pure states |↑〉, |↓〉 and 1√

2
(|↓〉±|↑〉). For an orthonormal set of discrete eigen-

states {|φ〉}, corresponding to a complete set of commuting observables, normalized
wavefunctions can be decomposed according to

|ψ〉 =

1̂︷ ︸︸ ︷∑
i

|φi〉 〈φi| |ψ〉 =
∑
i

〈φi|ψ〉 |φi〉 ≡
∑
i

cψφi |φi〉 , (2.1)

where c denotes a complex-valued scalar. The expectation value of an observable Â
w.r.t. a pure state ψ is denoted

〈Â〉ψ = 〈ψ|Â|ψ〉 =
∑
i,j

〈φj|ψ〉 〈ψ|φi〉 〈φi|Â|φj〉 =
∑
i,j

(cψφi)
∗cψφj 〈φi|Â|φj〉 . (2.2)

The notion of statistical uncertainty is incorporated by denoting the average over
elements |ψk〉 in the mixture as

〈Â〉 =
N∑
k=1

Wk〈Â〉ψk
. (2.3)

This could describe e.g. a statistical mixture consisting of (pure) right- and left
polarized photons with WR = 0.5 and WL = 0.5. In any case, Wi ∈ [0, 1] and

8



CHAPTER 2. DENSITY MATRICES 9

∑
kWk = 1. The ensemble average gives rise to the density operator, identified by

〈Â〉 =
N∑
k=1

∑
i,j

Wk 〈φj|ψk〉 〈ψk|φi〉 〈φi|Â|φj〉 (2.4)

=
∑
i,j

〈φj|

ρ̂︷ ︸︸ ︷( N∑
k=1

Wk |ψk〉 〈ψk|
)
|φi〉 〈φi|Â|φj〉 . (2.5)

The density matrix in the φ-basis is given by

ρji = 〈φj|ρ̂|φi〉 =
N∑
k=1

Wk(c
ψk

φi
)∗cψk

φj
. (2.6)

The density operator identified in equation 2.5 is Hermitian (ρ̂∗ = ρ̂) since Wk is real.
From equation 2.6 it follows that (cψφi)

∗cψφj = cψφi(c
ψ
φj

)∗. Having identified the density
operator, the ensemble average can be written as a sum over the orthonormal basis
set {|φ〉}, giving rise to the trace property (note the identity operator in equation
2.5)

〈Â〉 =
∑
j

〈φj|ρ̂Â|φj〉 = Tr(ρ̂Â). (2.7)

This surprisingly clean property is an essential result of density matrix theory. Other
important properties are:

• The density operator has unit trace, seeing that

Tr(ρ̂) = 〈1〉 =
N∑
k=1

Wk 〈ψk|ψk〉 =
N∑
k=1

Wk = 1. (2.8)

• Tr(ρ̂2) = 1 iff ρ̂2 = ρ̂ iff ρ̂ pure.

• Density matrices with one non-zero diagonal entry ρii and zeros elsewhere
describe pure ensembles. However, this statement is not reversible (iff) since
this matrix is representation-dependent. Purity is only ensured by the previous
property.

• D-dimensional density matrices ρ with ρii = 1/D for i ∈ {1, 2, . . . , D} and
ρij = 0 for i 6= j describe random ensembles. Diagonality implies representa-
tion invariance.

2.2 Entropy

In the Schödinger picture (time-dependent operators) the Liouville equation,

i~
dρ̂(t)

dt
= [Ĥ(t), ρ̂(t)], (2.9)
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describes the equation of motion for density operators. In thermal equilibrium we
have dρ̂(t)

dt
= 0, so that the Hamiltonian and density operators have a common set of

orthonormal eigenfuctions {|η〉} with

Ĥ |ηk〉 = Ek |ηk〉 ρ̂ |ηk〉 = ρk |ηk〉 . (2.10)

An additional requirement for thermal equilibrium is maximized entropy. Entropy
for density matrices is measured by the von Neumann entropy [19],

S = −Tr(ρ̂ ln ρ̂), (2.11)

where 0 ≤ S ≤ ln(D) with the lower bound and upper bounds describing pure
and random ensembles respectively, thereby quantifiying uncertainty about the sys-
tem1,2.

In the canonical ensemble (constant number of particles, volume and tempera-
ture), the equilibrium operator can be found by employing the Lagrange-multiplier
method for the optimization problem

maxS, while Tr(ρ̂) = 1 and Tr(ρ̂Ĥ) = E. (2.12)

Using that S =
∑

k ρk ln ρk and Tr(ρ̂Ĥ) =
∑

k ρkEk, the Lagrangian can be written
as

L = S − λ1(Trρ̂− 1)− λ2(Tr(ρ̂Ĥ)− E) (2.13)

= −
∑
k

ρk ln ρk − λ1(
∑
k

ρk − 1)− λ2(−E +
∑
k

ρkEk) (2.14)

= −
∑
k

ρk(ln ρk + λ2Ek + λ1) + λ2E + λ1. (2.15)

The gradient w.r.t. the variables at interest is ∇L = (∂ρk , ∂λ1 , ∂λ2). From ∂ρkL it
follows that ρk = exp(−1− λ1 − λ2Ek) for all k. By substituting this expression for
ρk in the trace constraint,

Tr(ρ̂) = exp(−1− λ1)
∑
i

exp(−λ2Ei) = 1, (2.16)

it follows that the density matrix of the canonical ensemble in thermal equilibrium
has a decomposition with spectral coefficients

ρk =
exp(−βEk)∑
i

exp(−βEi)
, (2.17)

where the Lagrange multiplier λ2 is a degree of freedom identified as the inverse
temperature β ≡ λ2 ≡ 1/(kbT ). Consequently, the Boltzmann distribution for
quantum systems is denoted

ρ̂ =
exp(−βĤ)

Tr(exp(−βĤ))
. (2.18)

The denominator in equation 2.18 is called the (canonical) partition function.

1This will be discussed more subtly in 2.3.2.
2The rigorous mathematical foundation of density operator theory can be attributed to John

von Neumann. To get an idea of the historical impact of his work on quantum physics, admire the
foreword of the 2018 republication of his book: Mathematical Foundations of Quantum Mechanics
[20]. This book includes a motivation for the von Neumann entropy in section V.2.
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2.3 Entanglement

Entanglement is a correlation property of quantum mechanics that has no classical
equivalent. Utilization of this quantum property in machine learning algorithms is
therefore of importance in order to outperform their classical equivalents. More gen-
erally, in quantum computing it seems entanglement is the main hope for quantum
supremacy. On the other hand, quantum adaptations of classical algorithms must
be able to capture entanglement appropriately. As will be discussed, the ability of
a neural architecture to express entanglement depends on the entanglement scaling
law.

Schrödinger coined the term entanglement with the following description [21]:

“When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the
systems separate again, then they can no longer be described in the same
way as before, viz. by endowing each of them with a representative of
its own. I would not call that one but rather the characteristic trait
of quantum mechanics, the one that enforces its entire departure from
classical lines of thought. By the interaction the two representatives [the
quantum states] have become entangled.”

Summarizing, a system composed of two sub-systems described by |ψ〉A and |ψ〉B,
with respective Hilbert spaces HA, HB, is entangled if it cannot be represented by
a tensor product of wavefunctions, i.e. does not have a separable representation

|ψ〉 = |ψ〉A ⊗ |ψ〉B , (2.19)

where ⊗ denotes the tensor product. Condidering statistical ensembles, separability
requires that the density operator ρ̂ of the composite system can be represented as

ρ̂ =
∑
k

Wk ρ̂
k
A ⊗ ρ̂kB. (2.20)

The most disconcerting consequence of entanglement is that the state of system A,
entangled with system B, may be steered by performing measurements exclusively
on system B. This curious and hard-to-interpret quantum characteristic has been a
thorn in the sides of many 20th century physicists [22].

Most notably Einstein asserted that quantum mechanics gave a correct, but
incomplete description. He disagreed with the view that the physical state of an
object could be dependent on the history of measurements performed on said object
and argued for a ’detached observer’ theory of quantum physics instead, using hid-
den variables to model quantum correlations between systems A and B with local
descriptions. His critique was shared by other physicists, resulting in the Einstein-
Podolski-Rosen argument against, what was in their view, an incomplete theory. In
particular they argued that, like the position and momentum of colliding two billiard
balls, classical correlations share a common cause, and the Copenhagen interpreta-
tion of quantum physics was wrong not to include this concept. The argument was
settled by Bohr in 1935 in favor of the Copenhagen interpretation. Nearly three
decades later, the proposed EPR interpretation (and any other hidden variable the-
ory) was definitely proven inconsistent with quantum mechanics by Bell’s inequality.
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2.3.1 Bell’s inequality

Imagine two spin-1/2 particles entangled (e.g. due to a decay process), so that they
reside in the (non-separable) singlet configuration

|ψ〉 =
1√
2

(|↑↓〉 − |↓↑〉). (2.21)

The average product of spins, repeatedly measured with two detectors placed in
series with orientations a and b is denoted P (a,b). This automatically implies
P (a, a) = 1, P (a,−a) = −1 and for arbitrary orientations P (a,b) = −a · b. All
(inherently classical) hidden variable theories result in Bell’s inequality [23]:

|P (a,b)− P (a, c)| ≤ 1 + P (b, c), (2.22)

following from simple probability theory considerations. A quantum mechanical
counter-example violating this inequality for the singlet configuration is quite simple:
when a,b and b, c are at 45° angles, so that P (a,b) = 0 and P (a, c) = P (b, c) =
−1/
√

2, the inequality of equation 2.22 is inconsistent since 1/
√

2 � 1− 1/
√

2.

In reference to their violation of the Bell inequality, the four maximally-entangled
two-qubit states are named the Bell states {|ψBell〉}, denoted (omitting normaliza-
tion) as ∣∣ψ+1,±

Bell

〉
= |↑〉A ⊗ |↑〉B ± |↓〉A ⊗ |↓〉B , (2.23)∣∣ψ−1,±

Bell

〉
= |↑〉A ⊗ |↓〉B ± |↓〉A ⊗ |↑〉B . (2.24)

2.3.2 Entanglement and purity

It should be clarified that entanglement and purity are two separate, co-existent
properties of a quantum system. Mixed states are very well capable of entangle-
ment, in which case we speak of noisy entanglement. While the Bell-states look

entangled non-entangled
pure |ψBell〉 |ψ〉 = |. . .〉A ⊗ |. . .〉B

mixed ρ̂Werner = p
∣∣ψ−1,−

Bell

〉 〈
ψ−1,−

Bell

∣∣+ (1− p)I/4 ρ̂ =
∑

kWk ρ̂
k
A ⊗ ρ̂kB

Table 2.1: Some examples of (non-)separable and pure/mixed two-qubit states.
The Werner state is a Bell-state plus white noise model, only non-separable for
p > 1/3 [24]. Moreover, Werner states can be described by hidden variable models
for p ≤ 5/12 [25].

harmless, the interpretation of entanglement is still subtle, especially when mixed
with other systems. A fundamental understanding of these systems is detrimental
for experimental quantum computing, especially with reference to decoherence; the
mixing of a pure state with other states. Quantifying entanglement and purity is
an ongoing subject of research. For example, it has been shown that entanglement
and purity dissipate at different rates in a two-qubit system in contact with a heat
bath [26].
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Tracing out subsystems

The von Neumann entropy plays a special role in quantifying entanglement for
bipartite systems (divisible in HA and HB), illuminating the relation between purity
and entanglement to some extent. In particular, the (pure) non-degenerate zero-
temperature ground state of some quantum lattice Hamiltonian ρ = |ψ〉 〈ψ| has von
Neumann entropy given by equation 2.11. Considering the state of one part A of
a bipartite section of the lattice can be done by tracing out the B-part. This gives
the reduced density matrix ρA = TrBρ. For example, the matrix of the (+1,+)-Bell
state is

ρ =
∣∣ψ+1,+

Bell

〉 〈
ψ+1,+

Bell

∣∣ (2.25)

=
1

2

(
|↑〉A ⊗ |↑〉B + |↓〉A ⊗ |↓〉B

)(
〈↑|A ⊗ 〈↑|B + 〈↓|A ⊗ 〈↓|B

)
(2.26)

=
1

2

(
|↑〉 〈↑| ⊗ |↑〉 〈↑|+ |↓〉 〈↑| ⊗ |↓〉 |↑〉+ |↓〉 〈↑| ⊗ |↓〉 〈↑|+ |↓〉 〈↓| ⊗ |↓〉 〈↓|

)
,

(2.27)

where the system sub-indices are implied A in front of, and B after the ⊗-sign
respectively. Taking the trace over sub-system B implies a summation over the
(orthonormal) basis of B:

ρA =
∑

|ψ〉={|↑〉,|↓〉}

(
I ⊗ 〈ψ|

)
ρ
(
I ⊗ |ψ〉

)
(2.28)

=
1

2

(
|↑〉 〈↑|+ |↓〉 〈↓|

)
. (2.29)

This density matrix describes a fully random ensemble, therefore having non-zero
entropy. Saliently, the uncertainty quantified by the von Neumann entropy is purely
quantum in this case: not due to classical uncertainty, but strictly due to entangle-
ment [27].

2.3.3 Entanglement scaling law

Having established entanglement as a non-negotiable property of quantum theory,
the next logical question is: “How entangled is my system?”. Although violation of
the Bell inequality means that a system is entangled the converse is not true [24],
rendering the ”degree of Bell-violation” useless as a faithful measure. The subject of
(measuring) entanglement is still an area of active research, most notably summa-
rized in [28]. Instead of going over different measures of entanglement, we will now
look at a more relevant aspect of entanglement with regards to many-body quantum
Hamiltonians and machine learning, following Ref. [27]. The reason for this is that
besides playing the “game” of quantifying the entanglement of quantum systems
with a single number, more general statements can be made about the scaling of
entanglement. This general classification into kinds of entanglement will prove to
be of importance since it can be shown that some machine learning architectures
can only model certain kinds of entanglement.

While it seems natural that entanglement scales with the size of a bipartite
section A of the lattice, many ground states of are said to adhere to an area law
of entanglement: the von Neumann entropy scales linearly with the boundary size
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of A. If the entropy does scale with the size of A, as might seem more natural,
the state adheres to a volume law, which is typical for systems that do not consider
only nearest-neighor interactions. Satisfying the area law is crucial for numerical
(ground-state) algorithms like DMRG, but also of importance to machine learning
algorithms such as the neural-net wavefunction (chapter 6).

The area law is closely related to the concept of quantum criticality, which on
its turn manifests itself in quantum spin lattices in qualitative changes in spin-
correlations. For zero-temperature systems, the spin-correlations can be explained
solely due to entanglement, hence entanglement undergoes a transition as well at
these critical points. In fact, at critical points the entanglement entropy scales
logarithmically with volume [29]. Only gapped, local, non-critical Hamiltonians
obey the area law of entanglement.



Chapter 3

Spin Lattice Models

In this chapter, a few example quantum spin-1/2 lattice models are exhibited along
with their analytical difficulties. The study of the magnetic and electric properties of
magnetically ordered solids has been greatly advanced by these models. In particular
they add to the understanding of high-Tc superconducting copper-oxides [30]. The
lattices described by these models consist of atoms paired with localized electrons,
interacting solely due to their spins through the exchange interaction; an effective
interaction due to Coulumb repulsion and the Pauli exclusion principle. Most models
studied in literature include only nearest-neighbor interactions, most famously the
Heisenberg model and the Transverse Field Ising Model. The anti-ferromagnetic
Heisenberg model originates from the most basic many-body particle model: the
Hubbard model.

3.1 Heisenberg models

Ferromagnetic interactions arise from spatially overlapping wavefunctions, for which
aligned spins reduce the Coulomb repulsion. Anti-ferromagnetic interactions arise
from spatially separated wavefunctions where anti-alignment reduces the kinetic
energy of the electrons [31]. Anti-ferromagnetism is characterized by a positive
exchange interaction. The quantum anti-ferromagnetic Heisenberg (AFH ) model is
denoted in its most general form as a sum over two-local interaction terms in all
directions,

H =
∑
ij

wxijσ
x
i σ

x
j + wyijσ

y
i σ

y
j + wzijσ

z
i σ

z
j , (3.1)

where σki denotes the Pauli spin operator on site i and direction k and the sum
is over nearest neighboring spin pairs ij. The Pauli operators act locally and are
formed by tensor products, making the Hamiltonian H exponential in the system
size. The Pauli spin operators -which form a basis for the space of 2× 2 Hermitian
matrices (together with the identity matrix)- are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.2)

Moreover, they are unitary with eigenvalues ±1. The σz operator has corresponding
eigenvectors

ψ+1 =

(
1
0

)
, ψ−1 =

(
0
1

)
. (3.3)

15
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The many-body state of a system is conventionally represented in this basis, also
known as the computational basis. Consequently one can represent such configura-
tions in ket-notation as |s〉 = |s1, s2, . . .〉, where si denotes the eigenvalue of σzi .

The interactions w are often taken direction dependent but lattice site indepen-
dent (wxij = wx, wyij = wy and wzij = wz). In case the couplings are axis-independent,
equation 3.1 is often rewritten as

H =
∑
ij

wij~σij (3.4)

= J
∑
i

~σi~σi+1 + αJ
∑
i

~σi~σi+2, (3.5)

where the last equality holds for the next-nearest neighbour model.
The AFH model with fully isotropic positive interactions (wxij = wyij = wzij > 0)

is also referred to as the XXX AFH model. In addition, one could consider XXZ
(wxij = wyij > 0, wzij > 0) and XYZ (wxij > 0, wyij > 0, wzij > 0) AFH models.
Another common assumption is periodicity, implying that the lattice forms a ring
by connection of the boundary spins1

As an example, the two qubit XXX Hamiltonian with w = 1 is given by

H =


1 0 0 0
0 −1 2 0
0 2 −1 0
1 0 0 1

 (3.6)

with corresponding ground state eigenvector ψ0 = (1/
√

2) · (0, 1,−1, 0)T: the singlet
state.

Elements 〈s|H|s′〉 of the Hamiltonian H of equation 3.1 can be evaluated locally
by

〈s|H|s′〉 =
∑
ij,i<j

(wxij − w
y
ijsisj) 〈s|FiFjs′〉+

∑
ij,i<j

wzijsisj 〈s|s′〉 , (3.7)

where Fi |s〉 = Fi |s1, s2, . . . , si, . . .〉 = |s1, s2, . . . ,−si, . . .〉, so that 〈s|Fis′〉 denotes a
Kronecker delta due to the orthonormality of the computational basis.

3.1.1 Marshall-Peierls Theorem

The Marshall-Peierls Theorem reveals that the ground state |ψ0〉 of a spin-1/2 XXZ
AFH Hamiltonian on an arbitrarily sized bipartite2 graph can be unitarily trans-
formed to determine its sign structure [32]. In addition,

〈s|ψ0〉 = 0 〈s| /∈ S, (3.8)

where S = {〈s| |
∑

i si = 0}. The unitary transformation can also be interpreted as
a transformation of the Hamiltonian around the z-axis for one of the sublattices, so

1Note that these nearest-neighbor models are effectively 1D chains.
2The concept of bipartiteness is also of importance in the context of Restricted Boltzmann

Machines (section 5.2.1). A lattice is bipartite if it can be divided into two subsets A and B,
with connections only between A and B but not between two members of the same subset. In
particular, nearest neighbor lattices are bipartite.



CHAPTER 3. SPIN LATTICE MODELS 17

that σx → −σx and σy → −σy, effectively introducing a minus-sign in σxi σ
x
j and

σyi σ
y
j terms for nearest-neighbor Hamiltonians. For the non-transformed ground

state (with sign structure)
∣∣ψ±0 〉, this implies〈
s
∣∣ψ±0 〉 = (−1)N↑(s)

〈
s
∣∣ψ+

0

〉
, (3.9)

where N↑(s) counts the number of spins with eigenvalue +1 on one of the sublattices
and ‖

〈
s
∣∣ψ+

0

〉
‖ = ‖

〈
s
∣∣ψ±0 〉 ‖ ∀ 〈s| ∈ S.

Element-wise positivity of the transformed ground state wavefunction can also
be derived directly from the action of the Marshall transformation, which ensures all
off-diagonal elements of the XXZ Hamiltonian are negative in the σz-basis. Conse-
quently, −H has all off-diagonal elements positive, so that the largest positive eigen-
value Eextreme of −H is equal to the spectral radius ρ(−H) = Eextreme, correspond-
ing to an eigenvector ψextreme which is element-wise positive by Perron-Frobenius
theorem [33]. For +H the eigenvalue spectrum is inverted, so that we denote
−Eextreme = E0 with ρ(H) = −E0 and ψextreme = ψ0. The off-diagonal negativity
property (by physicists known as stoquasticity), and consequently the element-wise
positivity of ψ0, will be of importance for numerical ground state methods (section
6.2.2).

3.1.2 Solving the Heisenberg model

Since the size of the Hamiltonian scales exponentially in the system size, exact
diagonalization is possible for up to only ≈ 30 spins, depending on the available
hardware. For highly symmetric models, this limit has been stretched up to fifty
spins [11]. Diagonalization can be done exactly through Gaussian elimination in
O(n3) time or by usage of more efficient iterative methods such as the Lanczos and
Arnoldi algorithms. In order to reduce the amount of required memory it is possible
to use sparse or even functional (matrix-free) representations, with the setback that
this might slow down required matrix operations.

The XYZ AFH models constitute a special class of Hamiltonians solvable by it-
erative methods different from conventional diagonalization3. Two notable methods
are DMRG [34] and the Bethe Ansatz [35][36]. These methods provide benchmark
results to test the accuracy of other numerical solvers.

A general method to solve the ground state of quantum spin Hamiltonians is
explored in section 6.

3More precisely, these Hamiltonians are integrable. Integrability in the classical sense refers to
the ability to describe dynamics of a system. The three body problem is a classical example of a
non-integrable problem.



Chapter 4

Markov Chain Monte Carlo

Monte Carlo methods use stochasticity in order to estimate expectation values w.r.t
some probability distribution. While officially developed alongside with the atomic
bomb at the Los Alamos National Laboratory by Ulam, von Neumann and Metropo-
lis in 1949 [37], the earliest usage of Monte Carlo is accredited to Fermi [38]. From its
inception, its applications have spread from neutron fission experiments and nuclear
cascades to stock market predictions and artificial intelligence. The theoretical de-
velopment of the method was accompanied by the experimental development of the
first electrical computers: the ENIAC, FERMIAC and MANIAC. Its widespread ap-
plications nowadays would have been unthinkable without the tremendous progress
made in computer engineering, moving from mechanical calculators and punching
cards for random numbers to logical units on a nanometer scale and being able to
generate millions of random numbers per second with consumer electronics.

An illustrative example to get acquainted with the concepts of Monte Carlo is
the estimation of π. A value proportional to π can be written as the relative surface
area of a unit circle inscribed in a unit square (see figure 4.1):

O(circle)

O(square)
=

πr2

l · w
=
π

4
. (4.1)

Imagine now that a dart is thrown at this figure. The dart will either land in the
large zone encompassed by the circumference of the circle, or in one of the four
zones encompassed by parts of the circumference of the circle and the square (see
figure 4.1). Assuming the dart is thrown without any bias towards certain areas,
the probability for the dart to land in the circle is precisely the ratio of the surface
areas in equation 4.1. Throwing a dart once gives only limited information: it either
landed within the circle or not. However, throwing more darts (or the same dart
multiple times) gives a direct estimate of π by counting the number of darts within
the circle and dividing it by the total amount of darts thrown. Throwing more darts
decreases the variance of our estimate of π according to the law of large numbers.
The decrease in the relative error w.r.t. the amount of independent darts thrown is
illustrated empirically in table 4.1.

4.1 Introduction to Monte Carlo methods

Monte Carlo (MC) methods are used to generate samples and/or calculate expec-
tation values from probability distributions in cases where the complete probability

18
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-1 0 1
-1

0

1

(a) A unit circle inscribed in a unit
square. The ratio of their relative sur-
face areas is proportional to π.

-1 0 1
-1

0

1

(b) 1000 Random darts dropped on the
surface. From this distribution of darts,
πestim = 3.164.

Figure 4.1: Monte Carlo estimation demonstrated.

darts (10···) π estimate rel. error
1 3.2 1.850 · 10−2

2 3.32 5.679 · 10−2

3 3.164 7.132 · 10−3

4 3.1504 2.803 · 10−3

10 3.14152004 2.311 · 10−6

Table 4.1: The Monte Carlo error of the estimated π decreases on average with the
amount of darts thrown.

distribution is not known [39]. Samples are single instances x from the probability
distribution γ(x). That is to say, taking many samples from the distribution and
tallying them in a histogram will resemble γ(x). The samples come from a state
space x ∈ X which is to be further specified later. MC is particularly applicable
in the case of unnormalized probability distributions, which arise naturally from
thermodynamics in the form of Boltzmann distributions with intractable normaliza-
tion constants. Intractable normalization constants are also ubiquitous in Bayesian
statistics.

However, even sampling from normalized distributions could still be problem-
atic, since there is not one straightforward way to collect the representative set,
without evaluating γ(x) everywhere. In order to properly account for the relevant
probability masses of a complex distribution, one needs smart strategies to traverse
the probability space. One such strategy is discussed in section 4.2.

An important note should be made about the dimensionality scaling of the Monte
Carlo method. The expectation value Φ of a function φ(x) is defined as

Φ ≡ 〈φ(x)〉 ≡
∫
dxγ(x)φ(x). (4.2)

With a set of N samples, {xi}Ni=1 sampled from γ(x), the exact expectation value is
approximated by the estimator1

Φ̂ ≡ 1

N

∑
i

φ(xi). (4.3)

1In other words: the population mean is replaced by the sample mean.
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With an increasing amount of samples, the variance of the estimator decreases.
This follows simply from the fact that if i.i.d random variables x are distributed
with variance σ2, then 1

N

∑N
i=1 xi has variance σ2/N . In particular, the variance is

independent of the dimensionality of x.

4.1.1 Back to the dartboard

The most naive way to traverse the entire state space X is by drawing random
samples with uniform probability (and approximating the normalization if needed
empirically by summing over all encountered probabilities). This is effectively what
was done for the estimation of π at the beginning of this chapter. Samples from the
square were collected directly with uniform probability and the amount of ’hits’ was
kept track off. More formally, π was treated as the expectation value of an indicator
function w.r.t. γ:

π ∝
∫

square

dxdyφ(x, y)γ(x, y), (4.4)

with

γ(x, y) =
1∫

square
dxdy

(4.5)

and

φ(x, y) =

{
1 if (x, y) in the circle,

0 if (x, y) outside the circle.

This integral is replaced by the estimator

π̂ ∝ 1

N

N∑
i=1

φ(xi, yi) (4.6)

This approach is less effective for distributions φ(x) with very unevenly divided prob-
ability mass, as many uniformly drawn points will have negligible contribution to
the integral2. While this is not prohibitively problematic in the dartboard example,
this typically becomes a problem with high-dimensional probability distributions.

More advanced sampling strategies are needed to account for more complex,
scattered probability masses. Two textbook sampling strategies that use a second,
known probability distribution Q(x) to sample from the target γ(x) are importance
and rejection sampling. Whilst insightful, these methods are not of practical use in
this thesis since they perform poorly in high-dimensional problems and rely some-
what heavily on prior knowledge of the target distribution.

4.2 Metropolis-Hastings sampling

A robust method suitable for high-dimensional distributions is the Metropolis-Hastings
(MH) method. Instead of using a static proposal probability distribution, MH uses

2For example, if we lived in a universe where the unit circle was replaced by a shape with much
smaller relative surface area.
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a state-dependent proposal distribution Q(x′|x) to collect samples in a sequential
fashion. The proposal state x′ is accepted as the new state with probability

A(x′|x) = min

{
γ(x′)

γ(x)

Q(x|x′)
Q(x′|x)

}
. (4.7)

Note that upon rejection of the new sample x′, the old sample is not discarded;
rather, it is repeated in the sequence. More importantly, normalization constants
disappear in the ratio γ(x′)/γ(x), making the method suitable for sampling from
unnormalized distributions. The proposal distribution could also be taken to be
symmetric, reducing the acceptance probability to

A(x′|x) =
γ(x′)

γ(x)
. (4.8)

Since the acceptance probability of a proposed state depends only on the current
state, the sequential gathering of samples is a Markovian process, meaning that the
random variable xt does not depend explicitly on any previous sample xt−j, j steps
back in the sequence [40]:

P (xt+1|xt,xt−1,xt−2, . . .) = P (xt+1|xt), (4.9)

making the sequence memoryless.

4.3 Markov chains

The sequence of samples generated by functions with the Markov property are called
Markov chains. The goal with these kinds of experiments, known under the collective
name Markov Chain Monte Carlo (MCMC), is to generate samples from the target
distribution. Rather intuitively, the aforementioned MH acceptance rate biases the
chain towards regions of the distribution with higher probability mass. However, the
success of the rather arbitrary looking MH algorithm should be demystified through
more careful investigation.

The first mystery is the unavoidable initialization effect. Upon initialization of
the chain, the first sample is strictly sampled from the initialization distribution
instead of the target distribution. How many steps are needed before samples can
be said to be from the target distribution? What is to say the MH ratio makes the
chain converge to the target distribution at all?

Secondly, the proposal distribution Q has not been specified. Remarkably, the
MH method leaves the choice of Q up to the imagination of the user. What makes
the MH acceptance ratio so special in order for it to be so generally applicable?

Fortunately, the distribution of samples generated with the MH acceptance prob-
ability of equation 4.7 can be proven to converge to the target distribution under
certain conditions. If these conditions are met, the target distribution is called the
stationary distribution of the Markov chain and the chain will converge to the sta-
tionary distribution starting from any initialization. The convergence conditions are
described in the following subsections.
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4.3.1 Detailed Balance

The conditional distribution P (xt+1|xt), is called the transition kernel. The transi-
tion kernel for the MH sampling method is [40]:

P (xt+1|xt) = P (xt+1 6= xt|xt) + P (xt+1 = xt|xt) (4.10)

= Q(xt+1|xt)A(xt+1|xt) + I(xt+1 = xt)
[
1−

∫
dyQ(y|xt)A(y|xt)

]
.

(4.11)

The first term in this expression describes the acceptance of the candidate state x′,
the second term describes its rejection, where I denotes the indicator function. Note
that the first term is only defined for xt+1 6= xt.

By multiplying either side by γ(xt)Q(xt+1|xt), one gets

γ(xt)Q(xt+1|xt)A(xt+1|xt) = min
{
γ(xt)Q(xt+1|xt), γ(xt+1)Q(xt|xt+1)

}
(4.12)

= γ(xt+1)Q(xt|xt+1)A(xt+1|xt), (4.13)

obtaining the detailed balance or time reversal equation

γ(xt)P (xt+1 6= xt|xt) = γ(xt+1)P (xt 6= xt+1|xt+1). (4.14)

Through straightforward evaluation it follows that the detailed balance property
also holds for the rejection term.

The link between detailed balance and the stationarity of γ can be demonstrated
by integrating the complete detailed balance equation w.r.t. xt∫

γ(xt)P (xt+1|xt)dxt = γ(xt+1), (4.15)

proving that γ is the invariant distribution w.r.t the transition kernel P ; in other
words, γ is invariant under P in the sense that3 γP = γ. Although the MH transition
kernel satisifies detailed balance, transition kernels could theoretically be simulta-
neously invariant and irreversible; detailed balance is a sufficient rather than a
necessary condition for invariance.

Markov Master equation

Perhaps a more insightful way of interpreting detailed balance is by examination of
the Markov master equation. This equation considers the flow of probability in a
continuous-time picture rather than discrete, denoting γ(x, t) as the probability of
γ to take on the value x at time t.

This interpretation allows only discrete state spaces X . In line with the distri-
butions of interest in this thesis, we could consider xi corresponding to a (discrete)
configuration of spins on a lattice. The continuous-time approach allows one to
write the probability flow in the differential form [41]

dγ(xj, t)

dt
= −

∑
i

Wjiγ(xj, t) +
∑
i

Wijγ(xi, t), (4.16)

3P is defined right-invariant by convention. Alternatively, P is left-invariant if Pγ = γ.
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where Wij denotes the conditional probability P (xt+1 = xj|xt = xi). The first term
of the r.h.s of equation 4.16 can be read as the probability to move away from the
configuration xj, while the second term describes the probability to move towards
xj.

Substituting detailed balance in this equation results in a zero net-flow of prob-
ability, dγ(xj, t)/dt = 0, elucidating the notion of γ as the stationary distribution
further.

4.3.2 Convergence

Having shown that Q can in fact be chosen freely (limited by regularity conditions
[40]), the matter of initialization is still an open question. Equation 4.15 ensures
that xt+1 is a sample from γ if xt is a sample from γ. However, since the chain starts
with a sample x0 from an initialization distribution (e.g. uniform, gaussian), which
is variant4 under P , the invariance property is not sufficient to ensure convergence.

In the treatment of the following material, a discrete state space is again assumed
for the sake of practical relevance. For discrete state spaces, the transition kernel
can be represented by a transition matrix, which is stochastic s.t.∑

j

Pij =
∑
j

P (xt+1 = xi|xt = xj) = 1. (4.17)

Irreducibibility and aperiodicity

In order for the initial distribution to converge to the target distribution, the chain
is required to be irreducible. A chain is irreducible if any part of state space has
a non-zero probability to be encountered within a finite amount of steps, starting
from any other part of state space: ∀x,y ∈ X ∃t : P t(x|y) > 0. This condition
can be violated when some states are absorbing w.r.t. the transition kernel. States
are considered absorbing if they are encountered in the chain with finite probability,
but can not be escaped with finite probability. Additionally, one may prove that
irreducibility implies uniqueness of the stationary distribution [42].

A requirement complementary to irreducibility is aperiodicity. The period of a
state x is the greated common divisior of the set T (x) ≡ {t ≥ 1: P t(x|x) > 0}. An
aperiodic chain will have period 1 for all states. This disallows the state space to
be divided into, for example, an even and an odd class such that only transitions in
the chain between the two classes are possible. Note that such a chain could still be
irreducible, even though it is periodic.

Convergence theorem and ergodicity

The total variation distance between two probability distributions γ and ξ is defined
as

||γ − ξ||TV = max
A⊆X
|γ(A)− ξ(A)|, (4.18)

which can be interpreted as the set of samples generating the largest possible dis-
tance between the two distributions. This measure is used in the Markov Chain

4Knowing the invariant distribution in advance would inherently solve the problem.
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Convergence Theorem: If P is irreducible and aperiodic, with invariant distribution
γ, then5

max
x∈X
||P t(·|x)− γ||TV ≤ Cαt, (4.19)

for 0 ≤ α ≤ 1 and C > 0. While theoretically detrimental for the merit of MCMC,
the convergence theorem is of little practical use. Even though a large amount
of literature is published on the subject of convergence, the determined limits are
necessarily loose and inevitably dependent on the specific sampling method and
probability-class [43]. Under the motto ’better some than none’, heuristics like auto-
correlation time (time for a chain to ”forget” where it started) could be employed.

According to the ergodic theorem irreducible, aperiodic chains that have (almost)
converged can be used to calculate expectation values w.r.t. the target distribution.
Ergodicity is a omnipresent idea in physics and mathematics, but its exact definition
varies subtly between the fields. In the widest sense it means that ”time averages
equal space averages”- an idea readily applicable to MCMC. The ergodic theorem
states that for any starting distribution µ and real-valued function f ,

P
{

lim
T→∞

T−1∑
t=0

f(xt) = Eγ(f)
}

= 1, (4.20)

where γ again is the stationary distribution of the irreducible chain that generates
samples xt. The proof of this theorem relies on the Strong Law of Large Numbers.

5P t(y|x) denotes the probability to move from x to y in t steps.



Chapter 5

Quantum Boltzmann Machines

Having defined the mathematical building blocks and physically relevant models, we
now turn to the actual quantum learning algorithm. This is preceded by a historical
contextualization of the emergence of this quantum algorithm.

Machine Learning (ML) can be defined as ”a set of methods that can auto-
matically detect patterns in data, and then use the uncovered patterns to predict
future data, or to perform other kinds of decision making under uncertainty” [44].
ML is used in particular for data compression, filtering, dimensionality reduction,
regression, feature extraction and classification. Machine learning is divided into
reinforcement learning (RL), supervised learning (SL) and unsupervised learning
(UL). SL learning methods rely on labelled data in order to find patterns in data,
whereas UL methods aim to find these patterns autonomously. In contrast to both
these methods, RL relies on the autonomous exploration of a parameter space while
given excitatory and inhibitory stimuli, similar to how an infant learns to under-
stand its environment. A thorough overview of the historically relevant papers for
the development of Deep Learning is given in [45].

Notable ML methods are Bayesian Networks, (Deep) Feedforward Neural Net-
works (FFNs) and Recurrent Neural Networks (RNNs). The neural network lends
its name to the rudimentary similarities to neuronal structures in the brain. The
basic ingredients for every neural net are vertices (neurons) and edges of varying
strength represented by weights. While FFN architectures edges and vertices do
not form a cycle, RNNs do. This makes their respective learning procedures and
interpretations of in- and output quite different. Original models of neural models
date back to the 1940’s [46] and were soon repurposed for learning algorithms [47].
The imperative back-propagation method for optimizing weights of neural nets of
arbitrary depth was developed in the 60s and 70s and popularized in the 90s.

Graphs with vertices and edges remind natural science researchers of crystal
lattices and spin models. Conversely, models from physics remind mathematicians
of graph theory and neuroscientists of brain structures; ML acts as a vehicle for
development of research in a plethora of scientific branches. The mutualism is par-
ticularly apparent in combination with physics, the Boltzmann machine being only
one example of this. The Boltzmann Machine (BM) was developed around 1985
[48], inspired by ideas from computational biology and psychology. The predecessor
of the BM is the Hopfield network, an early RNN with associative memory capabil-
ities. A 2002 publication by Hinton and Salakhutdinov [49] has popularized the BM
significantly with the development of the Contrastive Divergence learning method

25
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for a specific BM architecture: the Restricted Boltzmann Machine (RBM). Interest
in BMs has persisted in the 21st century, in part due to recent developments (and
possible applications) in quantum computing.

This chapter will first discuss the moving parts of the BM and their interpreta-
tions. From section 5.3 onward, the discussion will focus on the QBM.

5.1 Hopfield networks

Boltzmann machines are stochastic Hopfield networks. Hopfield networks consist of
a set of fully connected binary neurons, which turn on (x=1) and off (x=-1) based
on the total input a from other neurons. The connection matrix W is symmetric
(wij = wji) and has zeros on the diagonal. The activity rule of a neuron is based on
a threshold function

x(a) = Θ(a) ≡

{
1 a ≥ 0

−1 a < 0.
(5.1)

The state of each neuron may be updated in a particular order (asynchronously) or
they may be updated all at once (synchronously). In both cases, the updated state
of a neuron is determined as

xi = Θ(ai) = Θ
(∑

j

wijxj

)
. (5.2)

In the continuous case, the threshold function is replaced by an activation function
that smoothly transforms the input a to the [−1, 1] interval by xi = tanh ai.

Hopfield networks can be used for pattern completion and (combinatorial) opti-
mization problems. It can be shown that the asynchronous update rule for contin-
uous Hopfield nets minimizes an energy function E(x) = −1

2
xTWx. The physical

terminology hints to its relation to a (classical) spin system with energy

E(x) = −1

2

∑
i,j

Jijxixj, (5.3)

where Jij denotes a coupling strength. Minimizing the free energy of this system
in the mean-field approximation yields the same asynchronous update scheme with
aforementioned input and activation functions [39].

The capability of the Hopfield network to handle pattern completion comes from
its associative learning rule, which increases the connection between neurons based
on their correlation. The weight matrix W of the network is initialized to the average
correlations in some set of memories {x1, . . . ,xN}. This set of weights creates energy
minima for the memories, so that a noisy copy of a memory is likely to converge to
the original upon updating the neurons.

5.2 Boltzmann machines

A powerful ML method especially relevant for this thesis is the Boltzmann Machine
(BM). The BM is often employed in the physical sciences for inverse statistical
problems [50]: “problems where the statistical bulk features of a physical system are
known, but where the microscopic interactions are to be learned”.
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Boltzmann machines are derived from Hopfield nets, but use probabilistic update
rules that allow energetically unfavourable transitions rather than deterministic ac-
tivation functions. This makes it possible to escape from local minima in the process
of associative pattern completion, as described in the previous section. The energy
change when neuron xi is flipped can be denoted as

∆Ei =
∑
j

wijxj. (5.4)

Reminiscent of the Metropolis-Hastings sampling method, the Boltzmann machine
flips neuron xi with probability

pi =
1

1 + e−∆Ei/T
, (5.5)

where T is a temperature-like parameter. The higher the temperature, the more
uniform this probability becomes, the more likely it is energetically unfavorable
transitions are made. The BM is inextricably linked to statistical physics, in par-
ticular since equation 5.5 also describes the occupation probability in a two-level
system. From statistical physics it is known that a collection of such two-level par-
ticles in thermal equilibrium with a heat bath will be distributed according to the
Boltzmann distribution

P (x) = Z−1e−E(x)/T , Z =
∑
x

e−E(x)/T , (5.6)

such that the relative frequency of a configuration xA w.r.t xB is

P (xA)

P (xB)
= e−[E(xA)−E(xB)]/T . (5.7)

As previously discussed in the context of Markov chains (chapter 4), the BM is in
thermal equilibrium when the distribution of states it generates is time-invariant.

This direct relation between occupation probability and (local) energy terms
is the basis for the BM learning algorithm. Training is performed by performing
gradient descent on the discrepancy between the probability distributions of the
BM and the data, respectively denoted by P and Q. The discrepancy is measured
by the Kullback-Leibler divergence

K(Q||P ) =
∑
j

Q(xj) ln
Q(xj)

P (xj)
. (5.8)

The model-dependent part of the KL divergence can be split off

K(Q||P ) =
∑
j

Q(xj) lnQ(xj) + L, (5.9)

where
L ≡ −

∑
j

Q(xj) lnP (xj) (5.10)

denotes the average negative log-likelihood. Minimizing the divergence by shifting
model parameters thus boils down to minimizing the negative log-likelihood.
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The gradient w.r.t the weights can be derived with the chain rule to be

∂K

∂wij
= − 1

T
[〈xixj〉Q − 〈xixj〉P ], (5.11)

where 〈. . .〉D denotes the expectation value of the argument w.r.t. some thermally
equilibrated distribution D. This produces the simple learning rule

∆wij = ε[〈xixj〉Q − 〈xixj〉P ], (5.12)

with learning parameter ε. Its simplicity is a result of the log probability being
linear in the energy and the energy being linear in the parameters. Minimizing
the discrepancy between the data distribution and the BM distribution can also be
regarded as maximizing the likelihood that the BM generated the data distribution.
Without hidden units, the KL divergence is convex so that the gradient descent
method is not impaired by local minima.

The Boltzmann Machine could be extended with hidden neurons, allowing more
complex patterns to be learned. Consider for example the problem of learning pat-
terns which are constrained by parity (

∏
i xi = 1). With 3 neurons this constraint

cannot be satisfied without somehow capturing the complete state product, needing
more than just second order neuron correlations. To this end, the values of the hid-
den units are entirely determined by the data, and are not changed during sampling
of the BM distribution.

Additionally, the BM could be defined to include higher order energy terms [51],
but the additional cost of learning this model rarely overcomes the merit of increased
expressive power.

The generated model is an approximation of the target distribution. The network
consists of (Nv+Nh−1)(Nv+Nh)/2+Nv+Nh parameters (quadratic in the number
visible/hidden neurons), while the target distribution is inherently 2Nv -dimensional.
The quality of the model depends on its ability to embed high-dimensional regular-
ities with a low-dimensional representation.

5.2.1 Restricted Boltzmann Machines

The learning algorithms for connected Boltzmann Machines are notoriously slow.
The expectation values under the probability distribution P of the BM, are hard
to evaluate. One has to make assumptions about the thermalization time, and
subsequently a lot of samples are needed to form trustworthy estimators. This
problem can be alleviated by using a special type of BM: the Restricted Boltzmann
Machine (RBM). RBMs have no connections between neurons of the same type,
meaning that all hidden neurons are connected only to visible neurons and vice
versa. The RBM structure is also called a bipartite graph. For learning problems
RBMs are popular since the probabilities conditioned on the complete state of the
visible/hidden units factorize, which significantly reduces the computational cost of
the sampling procedure.

In quantum machine learning, RBMs have attracted attention for their great
representative power, and their ability to capture quantum phenomena (see chapter
chapter 6). Deep Boltzmann Machines are formed by adding more (interconnected)
hidden layers, and are proven to be exponentially more efficient at representing
quantum many-body states [52].
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Figure 5.1: A Restricted Boltzmann machine architecture with three visible (green)
and two hidden neurons (red).

5.3 Quantum Boltzmann machines

The Quantum Boltzmann Machine (QBM) was published by Mohammad Amin in
2018 [10]. The QBM yields a quantum probabilistic model, based on the quantum
Boltzmann distribution. Instead of a scalar energy model based on classical spins,
it defines a quantum system with Hamiltonian based on N qubits

H = −
∑
i

wiσ
z
i −

∑
i,j

wijσ
z
i σ

z
j , (5.13)

where wi and wij are dimensionless parameters. The Hamiltonian is generated with
tensor products of local spin operators,

σzi ≡
i−1︷ ︸︸ ︷

I ⊗ . . .⊗ I ⊗ σz ⊗
N−i︷ ︸︸ ︷

I ⊗ . . .⊗ I, (5.14)

where σz denotes the Pauli z-matrix. The density matrix, defined as

ρ = Z−1e−H , (5.15)

is diagonal, since the matrix exponent e−H =
∑∞

k=0(−H)k/k! is diagonal. Note
that inverse temperature β which is typically included in the (quantum) Boltzmann
distribution is an elusive parameter when considering parameterized Hamiltonians.
Temperature can be absorbed by the weights so that the zero-temperature approx-
imation β →∞ implies wr →∞ for all linear parameters wr.

Let x = {v,h} denote a configuration of visible and hidden spin configurations.
The marginal distribution is obtained by taking the partial trace over ρ, denoted as

P (v) = Tr[Λ(v)ρ], (5.16)

where Λ(v) is a diagonal matrix with a 1 on the index of v and zeros elsewhere.
With hidden units, the partial trace can be written as

Λ(v) = |v〉 〈v| ⊗
Nh︷ ︸︸ ︷

I ⊗ . . .⊗ I . (5.17)

Instead of using only diagonal operators in the σz-basis, the non-commutative nature
of quantum operators could be explored by including non-diagonal elements in the
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Hamiltonian. This is achieved through the addition of σxi , σyi , σ
x
i σ

x
j and σyi σ

y
j terms

in the Hamiltonian, each weighted accordingly.

The next step is finding a quantum equivalent for the KL divergence in order to
minimize the discrepancy between some data distribution of observed spin configu-
rations and the model. This is done by substituting the expression for the quantum
marginal of equation 5.16 in the equation for the (classical) negative log-likelihood
of equation 5.10, yielding

L = −
∑
v

Q(v) ln
Tr[Λ(v)e−H ]

Tr[e−H ]
. (5.18)

Performing gradient descent on this expression would be possible if the gradient
w.r.t. the model parameters would be easily evaluated with the chain rule as was
the case for the classical gradient. However, non-commutativity [e−H , ∂θH] 6= 0
throws a spanner in the works, introducing integrals that are hard to evaluate in
comparison to the classical thermodynamic averages.

The non-vanishing commutator implies that the chain rule cannot be applied
trivially. Instead, the matrix exponential is rewritten using the Trotter-Suzuki al-
gorithm [53]: e−H = (e−δτH)n, where δτ ≡ 1/n denotes imaginary time, so that the
anti-commutator can be assumed [e−δτH , ∂θH] = O(δτ 2). This allows the differential
to be rewritten by repeated application of the product rule:

∂θe
−H = ∂θ

n︷ ︸︸ ︷[
e−δτH · · · e−δτH

]
(5.19)

= e−δτH∂θe
−(n−1)δτH − e−1δτHδτ∂θHe

−(n−1)δτH (5.20)

= e−2δτH∂θe
−(n−2)δτH − e−2δτHδτ∂θHe

−(n−2)δτH − e−1δτHδτ∂θHe
−(n−1)δτH ,

(5.21)

where O(δτ 2) errors are neglected. Repeating this exercise for all orders produces
the compact representation

∂θe
−H = −

n∑
m=1

e−mδτH∂θHδτe
−(n−m)δτH , (5.22)

which can be transformed into integral form by δτ → 0 or n→∞:

∂θe
−H = −

1∫
0

δτe−τH∂θHe
(τ−1)H . (5.23)

Taking the trace over the right side of equation 5.23 makes the integrand τ -independent1.
By tracing the l.h.s as well, the result is finally

Tr
[
∂θe
−H] = −Tr

[
e−H∂θH

]
. (5.24)

1Using the cyclic permutation property Tr[ABC] = Tr[BCA] = Tr[CAB], and the fact that the
trace operation ”commutes” with the integral.
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By substituting equation 5.24 in equation 5.18, the gradient of the log-likelihood
can be written as

∂θL =
∑
v

Q(v)
(Tr[Λ(v)∂θe

−H ]

Tr[Λ(v)e−H ]
− Tr[∂θe

−H ]

Tr[e−H ]

)
(5.25)

=
∑
v

Q(v)
(Tr[Λ(v)∂θe

−H ]

Tr[Λ(v)e−H ]
− 〈∂θH〉ρ

)
, (5.26)

where 〈· · · 〉ρ ≡ Tr[ρ · · · ] denotes the expectation value w.r.t. the model density
matrix.

However, the first term in the log-likelihood gradient is hard to evaluate. It
produces a number of high-dimensional integrals equal to the number of data vectors,
requiring an equal number of MC processes in order to generate estimates. In the
original QBM paper [10], this requirement is circumvented by minimizing the upper
bound of L, instead of L itself. The disadvantage of this approach is that the
quantum weights are treated as hyperparameters (they are not learnable).

The QBM structure can also be used for discriminative supervised tasks by
clamping part of the visible neurons as input. The likelihood function for discrimi-
native learning depends on a distribution conditioned on the output.

5.3.1 Quantum models for classical data

The QBM discussed in the previous section sets the stage for quantum hardware
implementations. However, the proposed software implementation based on the
bounded likelihood is unable to learn transverse field parameters in e.g. the trans-
verse field Ising model.

Instead of translating density matrices to probability distributions with projec-
tion operators, another approach is proposed by Kappen [54]. In this paper, the
data is encoded in a data density matrix directly, denoted η. The model density
matrix ρ describes the quantum probability distribution of the unclamped QBM.
Having a quantum description for the model and data allows one to use a quantum
metric for the discrepancy between the two. This metric is the quantum relative
entropy, an extension of the Kullback-Leibler divergence for density matrices. The
relative entropy is given by

S(η|ρ) = Tr(η log η)− Tr(η log ρ). (5.27)

The first term is the von Neumann entropy of η. The second term (excluding the
minus sign) is the only model-dependent term, and is dubbed the quantum log-
likelihood. Optimization of the model density matrix is done by maximizing this
term. Gradients of this likelihood still scale exponentially with system size as was the
case in the learning algorithm of the previous section. However, the great advantage
is that optimizing the quantum metric instead of the classical KL divergence allows
all parameters, including wki and wkij for k = x, y to be learned by the QBM.

The quantum relative entropy is a thoroughly studied object with many known
identities (see e.g. [55][56]), which proves helpful in the analysis of experimental
results of the QBM. One important property of the quantum relative entropy is
Klein’s inequality that states S(η|ρ) ≥ 0 with equality only if ρ = σ. Of equivalent
importance is the joint convexity of S:

S((1− t)η0 + tη1|(1− t)ρ0 + tρ1) ≤ (1− t)S(η0|ρ0) + tS(η1ρ1), (5.28)
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for η0, η1, ρ0, ρ1 ∈ Sn, where Sn denotes the set of density matrices on Cn. Both
boundedness and convexity are crucial properties in order to ensure the reliability
of gradient descent methods performed on the likelihood-term.

We assume that our data density matrix η can be represented by a 1- and 2-
local quantum spin-1

2
Hamiltonian. In other words, the model density matrix ρ is

parameterized through the weights in the model Hamiltonian by ρ = e−H/Z with

H =
∑

k=x,y,z

n∑
i=1

wki σ
k
i +

n∑
i=1,j>i

wkijσ
k
i σ

k
j . (5.29)

The likelihood can be rewritten as

L = Tr(η log ρ) (5.30)

= Tr(η(log e−H − logZ)) (5.31)

= −Tr(ηH)− Tr(η logZ) (5.32)

= −〈H〉η − logZ. (5.33)

Since the Hamiltonian is linear in the connection weights, H =
∑

r wrHr, we can
generalize the gradient w.r.t. the model density matrix as ∂wrHr. The gradients
of the first term of equation 5.33 are simply ∂wr〈H〉η = 〈Hr〉η. The second term
requires Trotterization as was needed for equation 5.23, so that

∂wrTr(e−H) = −Tr(e−H∂wrH) = −〈Hr〉ρ, (5.34)

providing the simple gradient

∂wrL = 〈Hr〉ρ − 〈Hr〉η. (5.35)

Note that the data statistics 〈Hr〉η are constant during the learning process: the gra-
dient descent learning algorithm based on the quantum relative entropy intuitively
converges to a model density matrix ρ that reproduces the spin statistics under η,
as was the case for the classical Boltzmann machine.

Substituting our specific parameterization in the gradient gives the learning rule
∆wr = −ε∂wrL, with ε a small positive parameter, producing

∆wki = ε
(
〈σki 〉η − 〈σki 〉ρ

)
, (5.36)

∆wkij = ε
(
〈σki σkj 〉η − 〈σki σkj 〉ρ

)
, (5.37)

for k = x, y, z. When the parameterization is limited to the (classical) z-axis (k = z),
the classical BM learning rule is immediately retrieved.

This QBM method is able to learn classical and quantum parameters. This allows
one to learn a wider range of distributions w.r.t. the classical BM, in particular
distributions with inherent quantum correlations (e.g. parity models). Moreover,
having a quantum model ρ for a classical data density matrix η allows one to sample
efficiently from a classical distribution on quantum hardware.

The challenge lies in obtaining the free statistics 〈σr〉ρ. The Hamiltonian is fully
connected and does not adhere to any conventional quantum statistical law, and
could demonstrate any of these hard to capture characteristics: glassiness, degener-
acy, frustration, volume entanglement and long-range order.
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Data density matrix

The data density matrix, η, may originate from experimental expectation values
on a quantum lattice with unknown parameterization, or from classical data. In
the quantum case, learning can be done directly since the expectation values 〈Hr〉η
required for the learning rule are known.

In the classical case, a translation is necessary in order to embed the data in a
quantum object. This is done by a direct application of Born’s rule2, also referred
to as Qsample encoding [57]. This method provides an encoding for n-dimensional
binary data x ∈ {0, 1}⊗n, distributed according to function η̃ and normalized so
that

∑
x η̃(x) = 1. The quantum state encoding of this distribution is given by∑

x

√
η̃(x) |x〉. The empirical wavefunction (or qsample) corresponding to the clas-

sical distribution is decomposed as

|φ〉 =
N∑
i=1

√
η̃(xi) |i〉 , (5.38)

where 2n ≡ N . The rank-1 density matrix corresponding to this wavefunction is

η = |φ〉 〈φ| =
∑
i

∑
j

√
η̃(xi)η̃(xj) |i〉 〈j| . (5.39)

Representing the density matrix in the computational basis, states are denoted ac-
cording to sk = (sk1, . . . , s

k
n) where ski denotes the eigenvalue of basis state k and

qubit i. Equivalently,
∣∣ski 〉 = |±1〉 with |+1〉 ≡ |↑〉 and |−1〉 ≡ |↓〉.

Quantum correlations can be extracted from the classical data distribution by
noting

σzi |si〉 = si |si〉 σxi |si〉 = Fi |si〉 σyi |si〉 = isiFi |si〉 , (5.40)

where spin-flips are denoted with the spin-flip operator Fi |si〉 ≡ |−si〉. In particular,
the data spin statistics are

〈σxi 〉η =
N∑
k=1

√
η̃(Fisk)η̃(sk)

〈σyi 〉η = 0

〈σzi 〉η =
N∑
k=1

ski
√
η̃(sk)

〈σxij〉η =
N∑
k=1

√
η̃(FiFjsk)η̃(sk)

〈σyij〉η = −
N∑
k=1

ski s
k
j

√
η̃(FiFjsk)η̃(sk)

〈σzij〉η =
N∑
k=1

ski s
k
j

√
η̃(sk)

(5.41)

The classical distribution η̃ is built by counting occurrences of samples #(sk) in the
data set X and setting η̃(sk) = #(sk)/|X|. Consequently, the quantum statistics
are computed with a complexity linear in |X|.

5.3.2 Rank-1 approximation

Although calculating expectation values w.r.t. the model density matrix is an in-
tractable task for large systems, numerical methods exist (chapter 6) to approximate

2Interpreting the absolute square of amplitude coefficients |αi| as probability of measuring.
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the ground state statistics of a Hamiltonian. In particular, zero-temperature Monte
Carlo methods such as Variational Monte Carlo (see section 6.2) could be used to
retrieve the minimally required correlations in order to train the QBM.

Using only ground state statistics to calculate the expectation values in the
learning rule of equation 5.35 constitutes the rank-1 approximation. For classical
data and ground state statistics of Hamiltonians that can be mapped to the QBM
Hamiltonian, this approximation for ρ is motivated by the fact that the classical
density matrix is rank-1 as well.

The expressibility assumption entails that the parameterization of the Hamilto-
nian possesses the representational power to model the data wavefunction |φ〉 with
the ground state |ψ0〉 so that 〈φ|ψ0〉 ≈ 1, in which case |φ〉 is called identifiable.
There is no a priori reason to assume that the data wavefunction |φ〉 is identifiable.
In fact, this is only known when the |φ〉 generating the data statistics is known to be
a ground state originating from the model parameterization class (equation 5.29).
In the rank-1 approximation, the quantum relative entropy is not strictly convex,
making quantum state tomography impossible: ρ is merely trained to produce the
best parameterization for a generative model. The gradients are given by

〈Hr〉ρ = Tr(Hre
−H)/Z (5.42)

=
∑
i

〈ψi|
[(∑

k

Er
k |ψk〉 〈ψk|

)(∑
k′

e−Ek′ |ψk′〉 〈ψk′|
)]
|ψi〉 /Z (5.43)

=
∑
k

Er
ke
−Ek/Z (5.44)

=
Er

0 +
∑

k>0E
r
ke

∆k

1 +
∑

k>0 e
∆k

(5.45)

≈ Er
0 +O(e∆1), (5.46)

where Er
k = 〈ψk|Hr|ψk〉 and the spectral gap ∆k = (E0 − Ek) < 0 is assumed

sufficiently large. Approximating the gradient with ground state statistics therefore
introduces an error of order O(e∆1). Note that even though only ground state
statistics are used for training, the model density matrix ρ = e−H/Z is generally not
rank-1.

The rank-1 approximation of the likelihood

Effectively taking ρ = |ψ0〉 〈ψ0| for the calculation of gradients is reminiscent of a
zero-temperature approximation. However, the rank-1 approximation of the likeli-
hood is more intricate.

When the temperature of a system consisting of a Boltzmann distributed ensem-
ble of particles goes to absolute zero, the occupation probability of states becomes
non-stochastic and the system collapses to the ground state. Denoting β ≡ 1/kbT ,
the zero-temperature limit Gibbs state is given by the

lim
β→∞

ρ = lim
β→∞

e−βH

Tr(e−βH)
. (5.47)

By the Spectral Theorem for Hermitian matrices, the Hamiltonian can be decom-
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posed as H =
∑

iEi |ψi〉 〈ψi|, so that H |ψi〉 = Ei |ψi〉. This implies

lim
β→∞

ρ = lim
β→∞

∑
i e
−βEi |ψi〉 〈ψi|

Tr(
∑

i e
−βEi |ψi〉 〈ψi|)

(5.48)

= lim
β→∞

∑
i e
−β(Ei−E0) |ψi〉 〈ψi|∑
i e
−β(Ei−E0)

(5.49)

= |ψ0〉 〈ψ0| . (5.50)

Using equation 5.33, it becomes evident the quantum likelihood can be approximated
with only ground state information:

L = −〈H〉η − log

(∑
k

e−Ek

)
(5.51)

= −
∑
r

wr 〈σr〉η −
[
− E0 + log

(
1 +

∑
k>0

e∆k

)]
(5.52)

L1 ≈ −
∑
r

wr 〈σr〉η + E0. (5.53)

Note that the first term in equation 5.53 would diverge in the zero-temperature
limit, whereas limβ→∞ logZ = E0. The rank-1 approximation of the likelihood can
therefore be understood as a spectral-gap assumption, rather than zero-temperature.

Furthermore, it follows that L1 ≤ 0 for a rank-1 data density matrix η = |φ〉 〈φ|
with |φ〉 =

∑
k ci |ψi〉. This can be demonstrated by substituting the rank-1 density

matrix in equation 5.53, s.t.

L1 = −
∑
ijk

〈ψi| c∗i
[
Ej |ψj〉 〈ψj|

]
ck |ψk〉+ E0 (5.54)

= −
∑
k

|ck|2Ek + E0 (5.55)

= (1− |c0|2)E0 −
∑
k>0

Ek|ck|2 (5.56)

=
∑
k>0

|ck|2∆k ≤ 0,
(

1− |c0|2 =
∑
k>0

|ck|2
)

(5.57)

with equality only when the data vector is perfectly retrieved s.t. |c1|2 = 1.

Conclusion

The QBM optimization problem can be reformulated in the rank-1 approximation
as

maxL1 = max

{
−
∑

k=x,y,z

[ n∑
i=1

wki
〈
σki
〉
η

+
n∑

i=1,j>i

wkij
〈
σki σ

k
j

〉
η

]
+ E0

}
,

constrained by

H |ψ0〉 = E0 |ψ0〉 , H =
∑

k=x,y,z

[ n∑
i=1

wki σ
k
i +

n∑
i=1,j>i

wkijσ
k
i σ

k
j

]
.
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Calculating the gradients of L with ground state statistics induces a O(e∆1) er-
ror. Additionally, stochastic errors are induced when the ground state statistics are
obtained numerically.

It is possible to approximate the quantum likelihood L1 with only the weights
of the QBM and the ground state energy of the corresponding Hamiltonian. The
latter is subject to errors in the estimate of the ground state energy E0, when
obtained numerically. The rank-1 likelihood itself is subject to the spectral gap
error of equation 5.53. The numerical error on L1 slightly impedes the experimental
practicality of the QBM, since the efficacy of the QBM update rule (equation 5.37)
can be increased by employing update methods adaptive w.r.t. changes in the
likelihood.

The quantum relative entropy becomes an ill-defined measure for rank-1 η and ρ:
if 〈ψ|ρ|ψ〉 is zero, but 〈ψ|η|ψ〉 is finite, the quantum relative entropy diverges [58].
Therefore, one should be careful to apply a likelihood-interpretation to Tr(η log ρ)
for rank-1 data and model density matrices. However, the only true assumption for
approximating L and its gradients, is a large spectral gap for H. The (full) model
density matrix ρ = e−H/Z is generally not rank-1.

5.4 Entanglement properties

Numerous efforts are made to classify quantum spin Hamiltonians on basis of their
ground state entanglement scaling law. A fairly recent overview is given in aforemen-
tioned Ref. [27], where results are mentioned of many one-dimensional spin chains,
i.a. the (critical) Ising model, the XY model, and disordered chains. However, with
regards to the QBM, general statements cannot be made about the entanglement
scaling law for a Quantum Boltzmann Hamiltonian (QBH) parameterized by random
1- and 2-spin interactions (equation 5.13). In fact, a QBH is generally non-local,
rendering most research on entanglement scaling irrelevant. Long-range interaction
Hamiltonians have been examined in Ref. [59], where entanglement is characterized
in terms of non-locality of the weights, or equivalently the algebraic 1/rα scaling of
interaction-weights with distance r and “small” α. Yet, even this description is too
restrictive for QBH’s, the weights of which do not follow any a priori law.

In conclusion, the ground states of QBH’s should be assumed to adhere to volume
law, since the QBM learning algorithm generally encounters quantum critical and
non-local Hamiltonians.

5.5 Experiments

The Quantum Boltzmann Machine allows one to reconstruct density matrices from
arbitrary sources of N spins using the model class defined by WQBM = {wki , wkij|i, j =
1 . . . N ; k = x, y, z} of equation 5.13 by the update rule of equation 5.37. The update
rule relies on expectation values of the operators {σki , σki σkj |i, j = 1, . . . , N ; k =
x, y, z}. The distance measure between the data and model density matrix, η and
ρ respectively, is measured by the likelihood L (see equation 5.27). Quantum state
tomography can be performed by using a full rank model density matrix. The rank-1
algorithm should return a generative model that reproduces the statistics.
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5.5.1 Full rank

In the case of Quantum State Tomography (QST ), the QBM algorithm is demon-
strated by algorithm 1. As an example, this algorithm is used to perform QST
on the XXX AFH model (see figures 5.2-5.6). The correct weights are found (and
consequently the correct statistics generated) for the N = 10 AFH model after op-
timization of a randomly initialized model density matrix ρ. The same experiment
was repeated for a fully connected spin-glass (see figures 5.7-5.11). As discussed in
[54], the rate of convergence depends on the magnitude of the weights. η becomes
rank-1 in the limit β → ∞, meaning that S loses its strict convexity property. In
experiment, this is expressed by slower convergence for larger weights.

Algorithm 1: The basic QBM algorithm for tomography

Result: Optimized QBM model weights WQBM with L ≈ 0
max iter = 500 ;
momentum = 0.5 ;
ε = 0.02 ;
Retrieve the data statistics 〈Hr〉η ;

i=1 ;
Initialize model weights WQBM randomly ;
while i < max iter do

Calculate 〈Hr〉ρ ;

Update WQBM by ∆wr = ε(〈Hr〉η − 〈Hr〉ρ) ;

Calculate L, ∆L ;
i+=1 ;

end
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N=10 XXX AFH Hamiltonian
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Figure 5.2: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the data density matrix η in the
XXX AFH model.
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Figure 5.3: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of ρ after optimization. Statistics
are reproduced reliably with machine precision for the
single site statistics and O(10−6) RMS errors for the
correlations.
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Figure 5.4: The weights of the data
Hamiltonian from which the ground
state statistics are calculated.
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Figure 5.5: Machine precision tomog-
raphy on single site weights. RMS er-
rors of O(10−4) for wxij and O(10−5)
for wyij and wzij.
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Figure 5.6: Relative entropy converges to zero. Learning
stopped forcibly after 500 iterations.
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Figure 5.7: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the data density matrix η of a spin
glass Hamiltonian with couplings wkij ∼ N (0, 1/

√
N)

and wx,zi ∼ N (0, 1).
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Figure 5.8: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of ρ after optimization. Statistics are
reproduced reliably with an RMS error of O(10−5).
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Figure 5.9: The QBM weights that
generate Hamiltonian from which the
ground state statistics are calculated.
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Figure 5.10: O(10−3) RMS error for
wy and O(10−4) RMS errors for all
other weights.
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Figure 5.11: Relative entropy converges to zero. Learning
stopped forcibly after 500 iterations.
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5.5.2 Rank-1

The full-rank experiments are repeated, but now using the rank-1 approximation.
The data statistics are generated by calculating the ground state of the Hamiltonian
generated by the weights Wdata. This forces the data statistics to be reproducible by
the ground state of a model density matrix ρ. In general, e.g. when the data comes
from a classical distribution, this cannot be ensured. The algorithm is summarized
in algorithm 2. Note that a smaller learning rate without momentum was used
for reliability. With momentum, the likelihood often showed oscillatory behaviour
instead of smooth convergence.

The results of the (Marshall-Peierls) AFH model (figures 5.12-5.16) and spin
glass Hamiltonian (figures 5.17-5.21) are similar to the full-rank case, with the major
distinction that the weights cannot be reproduced. This can be explained by the
large but shallow basin of attraction towards the minimum of S: many sets of weights
WQBM correspond to a small quantum relative entropy. Moreover, the QBM was
trained for a classical data set, consisting of a neuronal recording of a salamander.
While this probability vector is not necessarily identifiable (see section 5.3.2), the
data statistics were reproduced with low RMS errors (figures 5.22-5.25).

Algorithm 2: The rank-1 QBM algorithm for learning a generative model ρ

Result: Optimized QBM model weights WQBM with L1 ≈ 0
max iter = 1000 ;
momentum = 0.0 ;
ε = 0.01 ;
Retrieve the data statistics 〈Hr〉η, where η is rank-1 ;

i=1 ;
Initialize model weights WQBM randomly ;
while i < max iter do

Calculate 〈Hr〉ρ, where ρ is the ground state density matrix of H ;

Update WQBM by ∆wr = ε(〈Hr〉η − 〈Hr〉ρ) ;

Calculate L, ∆L ;
i+=1 ;

end
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Figure 5.12: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the rank-1 data density matrix
η, constructed from the ground state of a spin glass
Hamiltonian with XXX AFH couplings.
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Figure 5.13: The single site (top row) and correla-
tion (bottom row) x, y, z-statistics (respectively in the
first to third column) of (rank-1) ρ after optimization.
Statistics are reproduced with machine precision for
the single site statistics, and RMS errors of O(10−4)
for correlations.
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Figure 5.14: The QBM weights that
generate Hamiltonian from which the
ground state statistics are calculated.
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Figure 5.15: The learned weights
wkij do not correspond to the exact
weights of the spin glass Hamiltonian.
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Figure 5.16: The negative likelihood converges smoothly to a
low value, indicating that the rank-1 data density matrix η has
been retrieved by updating ρ according to the QBM update
rule. Learning stopped forcibly after 1000 iterations.
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Figure 5.17: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the rank-1 data density matrix
η, constructed from the ground state of a spin glass
Hamiltonian with couplings wkij ∼ N (0, 1/

√
N) and

wki ∼ N (0, 1) and a spectral gap of |E0 − E1| = 0.7.
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Figure 5.18: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of (rank-1) ρ after optimization. RMS
errors of order O(10−4).
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Figure 5.19: The QBM weights that
generate Hamiltonian from which the
ground state statistics are calculated.
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Figure 5.20: The learned weights do
not correspond to the exact weights
of the spin glass Hamiltonian.
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Figure 5.21: The negative likelihood converges smoothly to a
low value, indicating that the rank-1 data density matrix η has
been retrieved by updating ρ according to the QBM update
rule. Learning stopped forcibly after 1000 iterations.
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Figure 5.22: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the rank-1 data density matrix η,
constructed from a neuronal activity movie of a sala-
mander. This classical probability vector can therefore
only be projected on the manifold parameterized by
WQBM.
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Figure 5.23: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of (rank-1) ρ after optimization. RMS
errors shown in figure 5.25.
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N=10 Classical data

Likelihood maximization
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Figure 5.24: The negative likelihood converges smoothly, even
though the salamander data is not taken from the QBM pa-
rameterization class.
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Figure 5.25: RMS error convergence of the relevant statistics.
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5.6 Conclusion

Using the full spectrum of the model Hamiltonian, the QBM provides a rich model
to learn Hamiltonians with the full-rank algorithm. Alternatively, with the rank-1
approximation the QBM can be used to train a generative model that reproduces
the data statistics of Hamiltonians in the QBM parameterization class with high
accuracy. For the full rank and rank-1 experiments, two different instances of nor-
mally distributed weights were used to see how the QBM would respond to more
challenging Hamiltonians. Aside from slower convergence, this was shown not to be
an issue. Moreover, for classical data the QBM was proven to provide a generative
model that is able to reproduce data statistics accurately. These results demonstrate
the potential of the QBM. If these experiments could be carried out on quantum
hardware, they would provide a way to learn a classical probability distribution by
repeated measurements on a quantum system.

In [54], it has been shown that these trained QBMs provide probability models
with increased predictive power compered to the classical BM. This power was
used to perform better on train-test-validation tasks, in particular for the classical
neuronal data set. Moreover, the QBM is shown to be able to learn a parity problem
with only visibile units.

In order to extend these promising results for larger data sets (spin models),
numerical methods are needed to estimate the unclamped statistics. This is done in
chapter 7, where training the QBM with a VMC method (see chapter 6) is explored.



Chapter 6

Neural Quantum States

Hilbert space scales exponentially with the number of particles. In order to inves-
tigate the physical properties of large systems, conventional methods like spectral
analysis of the Hamiltonian become intractable. A general spin-1/2 quantum Hamil-
tonian with 30 particles represented by Pauli matrices needs 260 ·64 = 7 ·1019 bits, or
70, 000 petabyte of classical storage. This number can be reduced somewhat by us-
ing hermiticity and sparseness, but none of these reductions is exponential. As long
as these states cannot be represented faithfully by a quantum computer, the best
option is to rely on numerical methods to approximate the physics at interest. The
ground state and its energy are of particular interest, the understanding of which
could help illuminate the phase of a material and its quantum phase transitions
accordingly. Numerical methods aim to investigate these features with polynomial
representations of relevant Hilbert space in polynomial time.

A recent method for finding ground state wavefunctions of spin-1/2 quantum
Hamiltonians was designed by Carleo and Troyer [14] in 2017. In this paper, a
variational Artificial Neural-net (ANN) wavefunction ansatz is presented. Further-
more, a reinforcement learning scheme is introduced to train the black-box model to
mimic, as closely as possible, the exact ground state. The quality of their algorithm
is tested by computing the ground state energy and spin correlations of large sys-
tems with specific Hamiltonians suited for comparison with other exact numerical
methods (as was briefly discussed in section 3.1.2). Besides learning the ground state
wavefunction, the ANN can further be used to describe dynamics as well, however
this will not be subject of further discussion in this thesis.

While the original paper only discusses stoquastic (sign-positive) groundstate
wavefunctions of 1D and 2D lattices, additional results are gathered for instances of
the QBM Hamiltonians (equation 5.13), which are fully connected and non-uniform.
These results indicate that the Neural Quantum State can be used to generate
groundstate statistics for stoquastic QBM Hamiltonians. Training the (stoquastic)
QBM with the approach discussed in this chapter is done in chapter 7.

6.1 Restricted Boltzmann Machines for quantum

state embeddings

In chapter 5, a probabilistic model is attached to Restricted Boltzmann Machines.
In particular, the occupation probability is inverse-exponential in the energy of the
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state. This idea is extended in the proposed RBM representation of a quantum
spin lattice. In the quantum case, the probabilistic model is given by the Born
description

P (s) = |ΨW(s)|2, (6.1)

where ΨW(s) denotes the local wavefunction of the visible state s denoted by its
binary eigenvalues in the σz-basis1 of the RBM parameterized by a set of complex-
valued weights W = {a,b,W}. The single-unit factors a and b are also referred to
as biases. Specifically,

ΨW(s) =
∑
{hi}

[
exp

(∑
j

ajsj +
∑
i

bihi +
∑
ij

Wijbiaj

)]
, (6.2)

where h denotes the state of the hidden units which take on values hi = {−1,+1}.
The hidden units are basis-independent and can therefore be seen as classical units.
Adding hidden units increases the expressive power of the RBM. The ratio of the
number of hidden Nh and visible units Nv is given by α ≡ Nh/Nv.

The notation of the wavefunction can be simplified since the hidden units take
on binary values and there are no intra-layer connections, so that2

ΨW(s) = exp
(∑

j

ajsj

)∏
i

2 cosh
(
bi +

∑
j

Wijsj

)
. (6.3)

For completeness sake, we write the total wavefunction as

|ΨW〉 =
∑
s

ΨW(s) |s〉 , (6.4)

which is intractable for large systems. This intractability is circumvented since
the learning algorithm relies only on “local values” (individual elements) of the
wavefunction for gradients and optimization, with an evaluation complexity scaling
only quadratically with the number of qubits.

The original publication [14] shows for the AFH model only the low errors of
the classical nearest neighbour correlations

〈
σzi σ

z
i+1

〉
. For the Transverse Field Ising

model, the nearest neighbour quantum correlations
〈
σxi σ

x
i+1

〉
are also shown to be

learned with relatively low error. With regards to the QBM, low errors are re-
quired for all statistics: classical and quantum, single site expectation values and
correlations, neighbouring (i, i+ 1) and all other (i, i+ j) correlations.

6.1.1 Using symmetries

Some Hamiltonians are endowed with a ground-state symmetry. The RBM is readily
adapted to incorporate these symmetries. This reduces the computational complex-
ity of optimization (see section 6.4) by getting rid of unnecessary expressibility. For

1The computational base the most natural choice, however, other basis representations may be
used. In fact, it is necessary to use multiple basis representations to do quantum state tomography
with the neural-net quantum state [60].

2The factor of 2 in the product can generally be omitted, since normalization is omitted in
general.
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example, translation-invariant Hamiltonians share this property with their ground-
states, so that aj = a, bi = b and W consists of a weights matrix where its columns
are necessarily cyclic permutations of other columns. For α = 1 this implies

W =

w1 w2 w3

w2 w3 w1

w3 w1 w2

 . (6.5)

This implication can be easily extended for α > 1. In a similar fashion, symmetries
w.r.t. spin flips and rotations may be imposed on the ansatz.

Besides the usage of symmetries to reduce the complexity of operations per-
formed on the ansatz, the quality of the network parameters can also be increased
experimentally by imposing a spin-sector restriction on the sampling procedure. The
spin-sector refers to a subset of configurations in Hilbert space that meets a certain
condition. In section 3.1 it is discussed that the ground state of the AFH model is
a singlet state for bipartite lattices. This can be used to the advantage of the sam-
pler by only addressing states with net-zero spin. This is done by using a sampling
method with total spin S = 0 conservation. This effectively reduces the size of the
Hilbert space of an N -particle system from 2N to a system of size

(
N
N/2

)
, thereby re-

ducing the sampling error considerably for small systems (see 6.5.2). Not only does
this reduce sampling noise, it also relieves the variational ansatz of the task to learn
ΨW(s) = 0 for configurations

∑
i si 6= 0 by allowing it to take on arbitrary values at

these configurations instead. This focuses the expressive power of the Ansatz to a
smaller state space, and relieves the MCMC sampler from local minima.

The drawback of enforcing this symmetry is that quantum spin correlations on

the x and y axis are not learned correctly. For example, σxi ≈ 1
Nsamples

∑
sk∈MCMC

ψ(Fis
k)

ψ(sk)

and σxij, and ψ(Fis
k) = ψ(sk

′
) with

∑
i s
k′
i 6= 0 is not learned correctly.

6.1.2 Representational power

Neural networks are often regarded as universal function approximators. If the
function at hand satisfies some natural and obvious smoothness conditions, the
network is expected to approximate the function reasonably well, given enough free
parameters to vary. In quantum machine learning, there is a special reason to tread
carefully with the universal function interpretation.

The role of entanglement

The neural-net representation of wavefunctions relies on an RBM to represent a
wavefunction along with its entanglement properties. However, the entanglement
scaling law of a Hamiltonian is a limiting factor for the ability to express its ground-
state wavefunction by an RBM [61]. In particular, an RBM where the hidden units
are only connected to a subset of visible units3 is shown to follow the area law.
However, RBM’s without this restriction are capable of representing volume law
entanglement.

3In this case, the neural-net representation can be rewritten as a Matrix Product State (MPS).
These MPS’s, or tensor networks, form the basis of DMRG, which is known to describe area-law
entanglement only.
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While the ability to represent volume-law states with RBMs does not imply
the necessary existence of a functioning learning scheme that actually finds the
representation and its energy, the capability of the neural-net to capture volume-
law entanglement represents a big advantage over tensor network approaches such
as DMRG. The architecture is able to represent even massively entangled (large
entanglement entropy) ground states, demonstrated in [61] for the Haldane-Shastry
Hamiltonian

H =
N∑
j<k

1

d2
jk

(−σ̂xi σ̂xj − σ̂
y
i σ̂

y
j + σ̂zi σ̂

z
j ) (6.6)

of N spin-1/2 particles with dij = (N/π)| sin(π(j − k)/N)|.

Shallowness

Another inevitable limitation of the RBM representation is its shallowness. An
example of the ground state of a two-dimensional Hamiltonian with no RBM rep-
resentation is given in Ref. [61]. Furthermore it is shown that adding hidden layers
increases the representational power such that this pathological state does have a
DBM (Deep Boltzmann Machine) representation. Although representability theo-
rems give some indication (see e.g. [62]), the exact class of physical states with an
RBM representation is still unknown [63]. The flexibility of the RBM is confirmed
in section 6.5.

6.2 Variational Monte Carlo in an Artificial Neural-

net context

This section will describe the method to optimize the weights of the RBM in order
to learn the ground-state of the Hamiltonian at hand. The optimization relies fun-
damentally on calculating gradients of the energy w.r.t. the variational parameters
using a Markov Chain Monte Carlo method, known as Variational Monte Carlo.
The normalized expectation value of the Hamiltonian H w.r.t. some variational
wavefunction |ΨW〉 is given by the Rayleigh quotient

R[ΨW ] =
〈ΨW |H|ΨW〉
〈ΨW |ΨW〉

. (6.7)

Minimization of the Rayleigh quotient is based on the famous Rayleigh-Ritz varia-
tional principle w.r.t. the exact ground state energy E0 of H:

R[ΨW ] ≥ E0. (6.8)

6.2.1 General VMC Error Analysis

The variational error is denoted ε = R[ΨW ] − E0. Now we expand the variational
wavefunction in the complete basis set of eigenvectors {ψ0, ψ1, . . .} of H,

|ΨW〉 =
∑
i

ci |ψi〉 . (6.9)
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It follows that the error ε in the variational energy can be written as

ε =
∑
i 6=0

|ci|2(Ei − E0) ≥ ∆
∑
i 6=0

|ci|2, (6.10)

where ∆ = E1 − E0 > 0 denotes the spectral gap. The normalization condition
implies

ε ≥ ∆(1− |c0|2). (6.11)

Note that the error in the variational energy scales quadratically with the error in
the variational wavefunction. Interestingly, the lower bound of ε scales linearly with
the spectral gap. In practice, VMC is aided by a large spectral gap.

6.2.2 Sign problem

As discussed in chapter 4, MCMC lends itself well to explore probability distri-
butions from statistical physics, particularly the Boltzmann distribution. Classical
distributions are associated with purely positive weights γ(x) ≥ 0. Sampling issues
in Monte Carlo experiments arise when quantum mechanical distributions are given
classical interpretations. In Diffusion and Green Function Monte Carlo the problem
problem arises due to the Green function not being stochastic [64][65], which on its
turn is caused by positive off-diagonal elements in the Hamiltonian H. A dirty fix is
to carry the minus-sign over to the sampled observable Ô at interest. Consequently,
this requires the sampling of (〈〈sign〉〉+ and 〈〈Ô· sign〉〉

+
) which both go to zero expo-

nentially with the system size. This scaling nullifies the intended benefit of Monte
Carlo: the replacement of an exponential problem by a polynomial approximation.

The sign problem is basis-dependent. However, finding the transformation to re-
lieve H of its positive off-diagonal elements is in general as hard as exact diagonaliza-
tion. However, for some Hamiltonians efficient techniques have been developed. In
section 3.1, it is noted that the the transformation for the XXX anti-ferromagnetic
Heisenberg model is given by Marshall-Peierls sign rule: the sign structure of the
ground state is known. In other words, a transformation to circumvent the sign prob-
lem is known. Sign problem free Hamiltonians (no positive off-diagonal elements)
are known as stoquastic (portmanteau of stochastic and quantum).

Finding a stoquastic basis for a given Hamiltonian is an active field of research.
For the XYZ model an efficient algorithm was recently developed to find the unitary
transformation to make an n-qubit XYZ Hamiltonian (without single qubit terms)
stoquastic in O(n3) time [66].

For Variational Monte Carlo (VMC ), however, sampling is done w.r.t. the ab-
solute square of the wavefunction. Therefore, one would not expect the quality of
VMC estimates to depend on the sign structure of the Hamiltonian or its ground
state. Nevertheless, as will be shown in section 6.5.2, stoquasticity does change the
quality of the results. It is argued in [67] that the generalization of sign-structure
based on a small sample from Hilbert space is a problem on its own, independent
of the sampling sign problem. In this paper, hardness of learning sign structure
is quantified in terms of frustration for several 2D lattices. Moreover, there is no
known theory that guarantees non-randomness of the sign structure of ground states
of general spin Hamiltonians. Truly random sign structure cannot be learned.
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6.2.3 Zero-variance property

For increasingly better approximations |ΨW〉 of the true ground state Φ0, the vari-
ation between Markov chain samples of the local energy is reduced due to the zero-
variance property. A perfectly optimized variational wavefunction (excluding ex-
pressibility errors) is an exact eigenfunction of H, so that

〈s|H|ΨW〉
〈s|ΨW〉

= E
〈s|Ψ〉
〈s|Ψ〉

= E. (6.12)

Although an idealised approximation, the variance of the local energy over a Markov
chain is in fact reduced in when the variational parameter set represents the ground
state (or any other eigenstate) with sufficient accuracy. Inconveniently, this property
does not apply to observables that do not commute with H. Reduction of the
variance of the local energy can be used as an alternative to Rayleigh quotient
minimization in order to optimize a variational wavefunction. This is also known as
the sigma variational principle.

6.2.4 Pathological ground states

For ill-behaved Markov chains the sampling results are capricious (see section 4.3.2).
Chains might get stuck on configurations since wavefunctions are not necessarily
smooth distributions. This becomes a tangible problem when only local moves are
allowed in the chain. A simple demonstration of this is the 1-local (Markov moves
with Hamming distance 1) sampling of the ground state of the anti-ferromagnetic
Heisenberg system consisting of 2 spin-1

2
particles. The ground state of this system

is the singlet state, denoted in the computational basis by Φ0 = 1√
2
(0, 1,−1, 0)T .

Reducible 1-local samplers do not exist for this system, since neither the (↓↑) state,
nor (↑↓) can be escaped by flipping one spin as it has to move through one of the
ferromagnetic “bottleneck” configurations with transition probability 0. The two
configurations are said to be on two different islands in spin-configuration space.

This problem can be alleviated by using more advanced sampling methods. The
most straightforward solution to this problem is allowing steps with larger Hamming
distance. This approach can be further improved by parallelization. Furthermore,
one would expect the number of islands separated by bottlenecks of small Hamming
distance to scale inversely with dimensionality (having an island of size N in a
system of size N becomes unlikely for large N). The validity of this assumption is
supported by the results in section 6.5.2.

6.2.5 Sampling of RBM Gradients

A multitude of different routines exist in order to optimize equation 6.7, each using
the gradients in a slightly different manner. The energy gradients w.r.t a variational
wavefunction are denoted as

fk = −∂E(W)

∂Wk

= − ∂

∂Wk

〈ΨW |H|ΨW〉
〈ΨW |ΨW〉

. (6.13)

A Taylor expansion of the variational wavefunction in its variational parameters
yields (for the k’th component of W):

ΨW+δWk
(s) = ΨW(s) + δWk

∂ΨW(s)

∂Wk

+O(∂W2
k). (6.14)



56
6.2. VARIATIONAL MONTE CARLO IN AN ARTIFICIAL NEURAL-NET

CONTEXT

Assuming ΨW(s) 6= 0, equation 6.14 can be rewritten in terms of local operators
Ok

4 , corresponding to the variational parameter Wk defined by diagonal matrix
elements5

〈s|Ok|s′〉 = Ok(s)δs,s′ (6.15)

Ok(s) =
∂ ln ΨW(s)

∂Wk

=
1

ΨW(s)

∂ΨW(s)

∂Wk

, (6.16)

so that
ΨW+δWk

= (1 + δWkOk)ΨW . (6.17)

Considering an explicitly normalized wavefunction,

|v0,W〉 ≡
ΨW
||ΨW ||

, (6.18)

we define for every variational parameter the perturbed state

|vk,W〉 ≡ (Ok −Ok) |v0,W〉 , (6.19)

where

Ok = 〈v0,W |Ok|v0,W〉 =
〈ΨW |Ok|ΨW〉
〈ΨW |ΨW〉

. (6.20)

The normalized version of equation 6.17 can therefore be written as

|v0,W+δWk
〉 ∝ |v0,W〉+ δWk |vk,W〉+O(δ2

k). (6.21)

The derivative of the energy can thus be worked out using equation 6.21 and by
definition of the infinitesimal difference:

∂E(W)

∂Wk

= lim
δWk→0

〈v0,W+δWk
|H|v0,W+δWk

〉 − 〈v0,W |H|v0,W〉
δWk

(6.22)

= 〈vk,W |H|v0,W〉+ 〈v0,W |H|vk,W〉 (6.23)

= 2 Re

[
〈ΨW |H(Ok −Ok)|ΨW〉

〈ΨW |ΨW〉

]
(6.24)

= 2 Re

[∑
s 〈ΨW |H|s〉 〈s| (Ok −Ok) |ΨW〉∑

s 〈ΨW |s〉 〈s|ΨW〉

]
. (6.25)

Components 〈s|H|ΨW〉 / 〈s|ΨW〉 are interpreted as the local energy Eloc of the system
at state s or, equivalently, the s-component of the eigenvalue-equation H |v0,W〉 =
E |v0,W〉. This quantity is evaluated during sampling to estimate the energy. Equa-
tion 6.25 can now be written as:

∂E(W)

∂Wk

= 2 Re

[∑
sE
∗
loc(s) 〈ΨW |s〉 〈s| (Ok −Ok) |ΨW〉∑

s | 〈ΨW |s〉 |2

]
(6.26)

= 2 Re

[∑
sE
∗
loc(s)(Ok −Ok)|ΨW(s)|2∑

s |ΨW(s)|2

]
. (6.27)

4Strictly speaking Ok depends onW, but this dependency is implied to avoid cluttered notation.
5Note that the RBM ansatz is a complex exponential ez. Consequently, it satisfies the Cauchy-

Riemann equations and is holomorphic. This allows complex differentiation of ΨW w.r.t. a pa-
rameter Wk ∈ C, even though E(W) is real and not holomorphic.
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The energy derivatives are expectation values, evaluated by a Monte Carlo process on
the state space under the distribution |ΨW |2. With respect to a two-local quantum
Hamiltonian (equation 5.29), the local energy for spin-configuration s can be denoted

Eloc(s) =
n∑

i=1,i<j

ΨW(FiFjs)

ΨW(s)
(wxij − w

y
ijsisj) +

n∑
i=1

ΨW(Fis)

ΨW(s)
(wxi + isiw

y
i )+

n∑
i=1,i<j

wzijsisj +
n∑
i=1

siw
z
i .

(6.28)

Equivalently, other spin observables are determined locally as:

σxi (s) =
ΨW(Fis)

ΨW(s)
(6.29)

σyi (s) = isiσ
x
i (s) (6.30)

σzi (s) = si. (6.31)

The explicit local gradients of the RBM are

Oai(s) = si (6.32)

Obj(s) = tanh θj(s) (6.33)

OWij
(s) = si tanh θj(s) = OaiObj , (6.34)

where θj(s) = bj +
∑

iWijsi.
Subsequently, stochastic estimates of the gradients are employed in the usual

descent scheme with some small learning parameter η:

W ′k =Wk + δWk (6.35)

δWk = −η∂E(W)

∂Wk

. (6.36)

6.3 Stochastic Reconfiguration

Although many gradient descent algorithms are available, Stochastic Reconfigura-
tion (SR) [65] is the most popular choice for updating the weights of the neural-net
ansatz (e.g. [68][14][60]). In literature, SR is often referred to as similar [60] or equal
[69] to the natural gradient method. While natural gradient follows a geometric ap-
proach, SR comes to the same conclusion via a more physical route. In order to shed
some light on how Natural Gradient is equivalent to Stochastic Reconfiguration, the
two are first explained separately. In section 6.3.3 they are unified.

6.3.1 Stochastic Reconfiguration in detail

Approximating the energy function by Taylor expansion in a small region around
some set of parameters w (with ∂E(w)/∂wk 6= 0), the energy E(w′) can be approx-
imated as:

E(w′) = E(w) +
∑
k

∂E(w)

∂wk
δwk +O(η2) (6.37)

= E(w)− η
∑
k

(∂E(w)

∂wk

)2

+O(η2), (6.38)
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so that the energy corresponding to the new parameters w′ is always smaller:

∆E = E(w′)− E(w) = −η
∑
k

(∂E(w)

∂wk

)2

< 0. (6.39)

The step magnitude can be controlled by normalization:

δs2 ≡
∑
k

δw2
k. (6.40)

This constraint can be incorporated by minimization of the Lagrangean with La-
grange multiplier µ:

∆E + µδs2 =
∑
k

∂E(w)

∂wk
δwk + µδw2

k, (6.41)

yielding the condition

δwk =
∂E(w)

∂wk
(2µ)−1. (6.42)

The learning rate is thus constrained by the normalization condition as η = (2µ)−1.
However, equation 6.40 implicitly assumes a Euclidean metric on the parameter
space. Overshooting is only prevented as long as this metric describes the energy
landscape accurately. A different metric is chosen to reflect a restriction on the
magnitude of change in the wavefunction, instead of its parameters. A measure that
takes into account the proximity between the initial and updated wavefunctions is:

δs2 = min
θ
|| exp(−iθ)v0,w+wk

− v0,w||2. (6.43)

Minimization over θ is done to ignore a global phase difference. Substitution of the
normalized wavefunction that has been updated in all parameters wk yields

δs2 =
∑
k,k′

〈vk,w|vk′,w〉 δwkδwk′ +O(|δw|2). (6.44)

The minimization of the Lagrangean with this new metric yields (compare with
equation 6.42) ∑

k′

Skk′δwk =
∂E(w)

∂wk
(2µ)−1. (6.45)

This linear system of equations is solved by

δw = S−1∇E(w)(2µ)−1, (6.46)

where the learning rate η = (2µ)−1 should be set small enough in order to satisfy
the same convergence property as determined in equation 6.39.

The matrix S, where Skk′ = 〈vk,w|vk′,w〉 can be identified as the matrix defining
the metric (and is of similar form as eq. 6.53). Writing S explicitly:

Skk′ = 〈vk,w|vk′,w〉 = 〈v0,w|(Ok −Ok)
∗(Ok′ −Ok′)|v0,w〉 (6.47)

= 〈v0,w|O∗kOk′ −O∗kOk′ −O
∗
kOk′ +O

∗
kOk′|v0,w〉 (6.48)

= 〈O∗kOk′〉+ 〈O∗k〉〈Ok′〉 − 〈Ok′〉〈O∗k〉 − 〈O∗k〉〈Ok′〉 (6.49)

= 〈O∗kOk′〉 − 〈O∗k〉〈Ok′〉 (6.50)
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Finally, the parameters are updated through

w′ = w − ηS−1∇E. (6.51)

Note that by assuming a diagonal metric, conventional gradient descent is retrieved
immediately. Numerical problems due to an ill-conditioned S are alleviated by
shifting the diagonal of S, effectively making the gradient more Euclidean.

6.3.2 Natural Gradient

The natural gradient provides the steepest direction of descent by geometry argu-
ments [70]. Let S = {w ∈ Rn} be the parameter space on which L(w) is defined.
When S is Euclidean with an orthonormal coordinate system w, the squared length
of a small incremental vector dw connecting w and w + dw is given by

|dw|2 =
n∑
i=1

(dwi)
2, (6.52)

where dwi are components of dw. When the coordinate system is nonorthonormal,
the squared length is given b the quadratic form

|dw|2 =
∑
i,j

gijdwidwj. (6.53)

When S is a curved manifold, there is no orthonormal linear coordinates, and the
length of dw is always written as in the last equation. Such space is Riemannian.
G = (gij) is the Riemannian metric tensor. In the Euclidean case it reduces to

gij(w) = δij =

{
1, i = j,
0, i 6= j

(6.54)

The steepest descent direction of a function L(w) is defined as the vector dw that
minimizes L(w + dw) where |dw| = ε2 is fixed.

Steepest descent in Riemannian space

The steepest descent direction of L(w) in Riemannian space is given by6:

− ∇̃L(w) = −G−1(w)∇L(w), (6.55)

where G−1 = (gij) is the inverse of the metric G = (gij), and ∇L is the conventional
gradient

∇L(w) =
( ∂

∂w1

L(w), . . . ,
∂

∂wn
L(w)

)T
. (6.56)

In the case of a Euclidean parameter space S with an orthonormal coordinate system,
the metric is simply the identity G−1 = G = I.

The learning rule becomes

w′ = w − ηG−1(w)∇l(z,w). (6.57)

6A proof is included in Appendix A.
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The Quantum Geometric Tensor

The proper metric to accurately determine the proximity of wavefunctions was first
formalized in [71]. The metric is formed by consideration of quantum rays, as
opposed to quantum states. Rays have the property that two states are described
by the same points (on the manifold of rays) if they differ only by a phase, meaning
two normalized vectors Ψ′ and Ψ of some Hilbert space defined as

Ψ′ = exp(iθ)Ψ (6.58)

describe the same ray. Consider a family of normalized vectors {Ψw} in this space
which depend smoothly on an n-dimensional parameter w = (w1, · · · , wn) ∈ R. The
distance measure is developed as usual by the inner product on this Hilbert space

||Ψw+dw −Ψw||2 = 〈Ψw+dw −Ψw|Ψw+dw −Ψw)〉 (6.59)

=
∑
i,j

〈
∂Ψw

∂wi

∣∣∣∣∂Ψw

∂wj

〉
dwidwj, (6.60)

where the last equality is a second order approximation. By separation of the real
and imaginary parts of the Hermitian inner product,〈

∂Ψw

∂wi

∣∣∣∣∂Ψw

∂wj

〉
= γij + iσij, (6.61)

the distance measure reduces, due to the antisymmetry of the imaginary part, to
the simpler form

||Ψw+dw −Ψw||2 =
∑
i,j

γijdwidwj. (6.62)

However, identifying γ as the metric tensor on the manifold of rays is wrong due to
its dependence on phase. Evaluating γ under a phase shift yields:

γ′ij = Re

[〈
∂Ψ′w
∂wi

∣∣∣∣∂Ψ′w
∂wj

〉]
(6.63)

= γij + βi
∂θ

∂wj
+ βj

∂θ

∂wj
+

∂θ

∂wi

∂θ

∂wj
, (6.64)

with βi = i
〈

Ψw

∣∣∣∂Ψw

∂wi

〉
7. This metric differs from γij, ergo the metric is gauge-

variant. This can be fixed by noting how the the βi terms transform:

βi → β′i = βi +
∂θ

∂wj
, (6.65)

leading to the improved metric

Gij = γij − βiβj, (6.66)

for which G′ij = Gij by design.

7Note that βi is real since 2 Re

[〈
Ψw

∣∣∣∂Ψw

∂wi

〉]
=
〈

Ψw

∣∣∣∂Ψw

∂wi

〉
+
〈

∂Ψw

∂wi

∣∣∣Ψw

〉
= ∂

∂wi
〈Ψw|Ψw〉 = 0.
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6.3.3 Equivalence with Quantum Geometric Natural Gra-
dient

The choice of metric by Sorella [72] (equation 6.43) for the SR method leads to an
update equation for the variational parameters which is reminiscent of the update
equation that emerges in the natural gradient formalism. As introduced above, the
Quantum Geometric Tensor is the (gauge invariant) metric for measuring ”physical”
distances between rays in projective Hilbert space, also referred to as the natural
Fubini-Study metric on quantum space [73]. Rewriting this natural metric (equation
6.66)

Gkk′ ≡
〈
∂wk

Ψw

∣∣∂wk′
Ψw

〉
− 〈∂wk

Ψw|Ψw〉
〈
Ψw

∣∣∂wk′
Ψw

〉
(6.67)

= 〈Ψw|O∗kOk′|Ψw〉 − 〈Ψw|O∗k|Ψw〉 〈Ψw|Ok′|Ψw〉 (6.68)

= 〈O∗kOk′〉 − 〈O∗k〉〈Ok′〉 (6.69)

= Skk′ (6.70)

yields the S-matrix used by SR (equation 6.50). By substitution of the S-metric
established above, the natural gradient in Riemannian space (equation 6.57) becomes

w′ = w − η∇̃E(w) (6.71)

= w − ηG−1∇E(w) (6.72)

= w − ηS−1∇E(w), (6.73)

which is equivalent to the update rule as proposed with stochastic reconfiguration
(equation 6.51). Therefore, SR can be interpreted as a Natural Gradient method
on some Hilbert space endowed with a Fubini-Study metric. Originally, SR uses a
different approach to ensure proper (non-Euclidean) normalization of the gradient
by usage of a phase-independent geometry. This consideration is also incorporated
by the Quantum Geometric Tensor. In SR it leads to a linear system of equations
described by the S-matrix, which is equal to the Quantum Geometric Tensor which
follows from geometric arguments more succinctly.

6.4 Complexity

In order to analyze the computational bottleneck of the ANN learning algorithm,
the complexity of the sampling and optimization process should be analyzed. In
this discussion Np ≡ |W| denotes the number of parameters.

6.4.1 Sampling

The Metropolis-Hastings sampler uses fractions of wavefunctions |Ψ(s′,W)/Ψ(s,W)|2
in order to sample gradients of the Rayleigh quotient and consequently update pa-
rametersW →W ′. A lookup-table θ = b+W T s can be used to save time. In order to
gather one local energy sample in an Nv-spin system, one needs O(N2

vNp) = O(αN3
v )

operations, due to the necessary evaluations of equation 6.28. For nearest-neighbors
models with uniform weights (e.g. the XXX AFH model), the complexity is reduced
to O(αN2

v ).



62 6.5. EXPERIMENTS

6.4.2 Optimization

Storage of the S-matrix can be prevented by making use of its product structure in
combination with an iterative solver. This leads to two modi operandi:

• Naive inversion. Build the S-matrix explicitly using O(N2
pNMC) time and

O(N2
p ) space. Subsequently, invert it exactly using O(N3

p ) operations to get
the updated wavefunction parameters.

• Matrix-free inversion. Use a conjugate gradient (CG) method, which re-
quires at most O(Np) steps to converge, each step requiring a matrix-vector
product S · z on some test vectors z. The computational cost of the product
can be reduced (and the storage of S prevented) by not forming S explicitly,
but rather using Sz = (O∗ − O∗) · ((O − O) · z) = (O∗ − O∗) · z′ = z′′. This
matrix-vector product requires O(NpNMC) operations. Since CG requires at
most O(Np) of such matrix-vector products, the final complexity is of domi-
nant order O(N2

pNMC). In practice, the number of CG steps needed to solve
the linear system with reasonable precision is much smaller than Np. In terms
of computation time, this makes CG a viable alternative for naive optimization
already for NMC ≈ Np. In terms of storage, usage of this method becomes in-
evitable for very large numbers of variational parameters where NMC < Np and
S ∼ O(N2

p ) too large to store. In terms of implementation, the copying of large
arrays to and from CPUs can be prevented by performing the matrix-vector
products in parallel, and collecting the resulting vectors in shared memory.

6.5 Experiments

The analysis of the performance of the Neural-net Quantum State is a complicated
matter with many knobs to turn. Tuning these parameters and determining their
correlations is an art. However, the chosen experiments all aim to answer the ques-
tion: “Does the polynomially scaling (in time and space w.r.t. the number of spins)
ANN model find the correct ground state energy and statistics?”. Sometimes, in-
evitably arbitrary decisions have to be made in order to fairly compare results. For
example, comparison of differently sized spin systems is done on the basis of a linear
scaling of samples. All the relevant parameters are:

• Number of spins N .

• Weights of the model at interest.

• The number of workers/CPUs, each one corresponding to an independent
Markov chain.

• The number of proposed flips by the sampler Nsamples. Single: only flips with
Hamming distance 1. Single/double: 50% probability of proposing a single flip
or a double flip of Hamming distance 2.

• The (initial) learning rate η. This is a real scalar that determines the step size
in the first optimization step. Default value η = 0.05.

• Decay factor γ. At iteration t, the learning rate is γtη. Default value γ = 1.
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• Regularization λ. Improve the condition number of the S-matrix. Default
value λ = 0.05.

• Hidden unit density α = Nh/Nv.

• Iterations/repetitions/optimization steps.

• Samples per iteration NMC.

• MCMC steps per sample (samples per sweep) to increase sample independence.
Default value equal to number of spins N .

• Thermalization steps. Default value set to 0.1 ·NMC.

• Conjugate gradient error tolerance ε. Default value 10−3.

6.5.1 The misleading accuracy of sampling

Although rarely used in practice, it is still a good sanity check to determine the qual-
ity of the complete variational wavefunction, denoted ΨW in the following analysis.
Some surprising results are collected for the XXX anti-ferromagnetic Heisenberg
model with naive (not S = 0 sector) sampling.

In figure 6.1, a discrepancy can be noticed between the mean local energy Eloc

and the Rayleigh Quotient R[ΨW ] = 〈ΨW |H|Ψ(W)〉
〈ΨW |ΨW 〉

. The mean local energy Eloc is
defined as the sampling average over the Markov chain of the last optimization
step. The mean local energies gathered by the double flip sampler are clustered in
above- and below-diagonal measurements that shift to and from either side upon
reinitialization and rethermalization (see figure 6.3).

Why it is surprising

While the measurements above the diagonal are expected due to sampling noise, the
cluster of measurements of the double flip sampler under the diagonal is surprising.
The sampling noise could, while very unlikely, decrease the error in the ground state
energy, however the large cluster far beneath the diagonal is not explained away by
this. These measurements demonstrate that the sampling average w.r.t. the |Ψ(W)|2
distribution could give a better estimate of the ground state energy than the exact
average over the same distribution. The shifts upon reinitalisation indicate that the
quality of the measurements changes due to differences in the Markov chain rather
than the quality of the variational wavefunction (figure 6.3). This is furthermore
confirmed by figure 6.2.

Why it happens

The raison d’être for the below-diagonal measurements becomes clear when ”floor-
ing” the optimized wavefunction by setting elements |ΨW(sk)|2 < 10−4 to 0. The
variational ansatz approximates the wavefunction with great precision, but zero-
elements of the true wavefunction settle to absolute values of around 10−4 in the
variational wavefunction. The effect of all these small (but non-zero) absolute value
elements adds up in the error of the Rayleigh quotient. However, these illegit-
imate states (corresponding to wavefunction elements that should have absolute
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value zero) are not sampled in the cluster underneath the diagonal. When a Markov
chain does not encounter such low probability states, it effectively samples from the
flattened wavefunction. Taking into account this fact figure 6.1 is redrawn in figure
6.4 (see also figure 6.8), showing that all measurements end up above the diagonal
as expected. This explains the measurements under the diagonal.

However, when a finite Markov chain does encounter a state sk with relatively
low absolute value (e.g. |ΨW(sk)|2 ≈ 10−2), it could move to such neighbouring
illegitimate states with non-negligible probability (about 0.01) by the acceptance

criterion min
(

1,
∣∣∣ΨW (Fijs

k)

ΨW (sk)

∣∣∣2), where Fij again denotes the flipping operator acting

on site i and j (see also section 3.1). When the sampler arrives at these illegiti-
mate states, unstable samples of the local energy are collected8, the computation of

which involves fractions over connected states
ΨW (Fijs

k)

ΨW (sk)
. Investigation of the Markov

chains belonging to the measurements of the double flips sampler reveals that the
above-diagonal cluster measurements all encountered an illegitimate state, while
all below-diagonal cluster measurements did not. Omitting the illegitimate states
and their local energy samples from their respective Markov chains results in their
measurements moving below the diagonal as well (figure 6.6). This explains the
measurements of the double flip sampler above the diagonal in figure 6.1.

Initially, there is no reason to expect that the single flip sampler would show
different behaviour, however figure 6.1 shows no clear above- and below-diagonal
clustering. The reason for this is the poor ergodicity of the Markov chains with
single flip transitions and consequently also the poorer network parameter solutions
found. Flooring the variational wavefunctions found by single flip sampling results
in slightly lower errors w.r.t. the true wavefunction, but nowhere near the low
errors of the double flip sampler (see figure 6.5 and 6.7). Correcting for illegitimate
states encountered by the single flip sampler has negligible effect, since the errors
caused by this are of lesser order than the error due to the poorly optimised network
parameters.

The errors of both the ”fixed” (floored) Rayleigh quotients and mean local ener-
gies (illegitimate samples removed) are shown in figure 6.9, showing almost all errors
are moved above-diagonal.

Conclusion

The node structure of the ground state wavefunction for this particular model is
known, and the encountered problems could easily be solved by using a S = 0-
sector sampler. However, this is not the case for any 2-local qubit Hamiltonians.
These results therefore show that learning -and sampling from- wavefunctions with
nodes can lead to large errors, effectively caused by the failure of the probability
distribution |ΨW |2 to meet the MCMC smoothness requirement.

8Note that the absolute values of local wavefunctions at illegitimate states ΨW(skilleg) and

ΨW(Fijs
k
illeg) are of the same order of magnitude, thus introducing large errors in the MCMC

mean over local observable samples.
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Error in Rayleigh coefficients / Local energies

own code: single flips
own code: double flips
NetKet: single flips
diagonal

Figure 6.1: Comparison between own software written in Julia and open-source
many-body quantum system software package NetKet [74]. 100 runs are performed
in each modus on the stoquastic AFH model with of a chain of qubits of length
L = 6 with periodic boundary conditions and α = 3. The figure also confirms the
proper workings of own software. The discrepancy between the mean local energy
and the Rayleigh quotient is visible when double spin flips are used to propose new
states in the local Metropolis sampler in own software. The double flip sampler
picks (with probability 0.5) 1 or 2 random sites of the chain to flip. The flip is

accepted with the Metropolis-Hastings probability min(1, |ΨW (Fijs
k)

ΨW (sk)
|2). The total

optimization algorithm consists of 800 steps, with 400 samples per step. The learning
rate at optimization step t is defined as η = γtηinit with ηinit = 0.05 and the decay
factor γ = 0.995. The single flip sampler encounters on average 2.93 unique states in
the last Markov chain before termination, while the double flip sampler encounters
13.75 unique states. The exact wavefunction has

(
n
n/2

)
= 20 non-zero absolute value

elements corresponding to the anti-ferromagnetic states {sAF|
∑

i s
AF
i ≡ 0}.
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Figure 6.2: Zoom of figure 6.1, including only the single/double flip runs of own
code. The colormap indicates the difference between the network parameter set
corresponding to the energy with the highest error and others by |Wmax − Wj|2.
There is no indication of clustering due to a multi-modal network parameter set.
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Figure 6.3: Sampling the local energy from a reinitialized and rethermalized Markov
Chain indicates that the dichotomy is due to issues in the sampling process.
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Figure 6.4: Flooring the variational wavefunctions optimised through double flip
sampling so that elements |ΨW(sk)|2 < 10−4 are put to 0, results in above-diagonal
errors in the Rayleigh quotient.
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Figure 6.5: Flooring the variational wavefunctions optimised through single flip
sampling so that elements |ΨW(sk)|2 < 10−4 are put to 0, results in above-diagonal
errors in the Rayleigh quotient.
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Removing illegitimate states from the Markov Chain

double flips
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Figure 6.6: Excluding states sk with |ΨW(sk)|2 < 10−4 (and the collected local
energies at these states) from the Markov chains of above-diagonal measurements
gathered with the double flip sampler results in a below-diagonal shift of the error
in Eloc
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Figure 6.7: The quality of the variational wavefunctions optimized by single flip
sampling is increased by flooring elements |ΨW(sk)|2 < 10−4.
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Figure 6.8: The quality of the variational wavefunctions optimized by double flip
sampling is increased by flooring elements |ΨW(sk)|2 < 10−4. The extent to which
the error is lowered is greater in comparison to the single flip variational wavefunc-
tions. This is explained by the fact that the error in the non-zero elements is also
higher for the single flip wavefunctions.
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Figure 6.9: The measurements corresponding to floored wavefunction Rayleigh quo-
tients (lateral shift) and fixed Markov chains (vertical shifts). Only a few single flip
errors remain below-diagonal, which can be attributed to “fortunate noise”.
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6.5.2 Stoquastic XXX AFH model

The XXX AFH model (section 3.1) is a straightforward choice to test the capabilities
of the Neural-net Quantum State for a system of non-diagonalizable size. Several
statistical tests are performed on this model.

In section 6.5.1 the error in Eloc w.r.t. the exact energy depends on the number
of flips the sampler performs each step (single or single/double flips). To see if this
result generalizes to systems of larger size, the same experiment is repeated for N=40
in figure 6.10. The error clusters corresponding to different samplers in figure 6.1 for
N=6 are absent for N=40: using a sampler which proposes single and double flips
does not lead to more accurate variational wavefunctions for larger system sizes.

Using a sampler that only visits
∑

i si = 0 states does improve convergence of
Eloc to the exact GS energy: see figure 6.11.

One reaches a point of diminishing returns when increasing the hidden unit
density α above some value. Figure 6.12 shows that the increased expressibility of
the model only reduces the error in the ground state energy for larger (N > 20)
systems. Even for N=40, using α = 6 does not give significantly better results than
α = 12. This result was also found in [68].

As a proof of concept, a NQS was also trained for an N=100 system, returning
relative energy errors similar to N=40 for α = 2, 6 (see appendix B).

With regards to the Quantum Boltzmann Machine, it is important that spin
statistics are retrieved with low error. Looking specifically at estimations of 〈σx〉,
the error scales with the system size (table 6.1). Moreover, the error increases with
large α. Other statistics and spin correlation functions are retrieved with one to two
orders of magnitude higher accuracy (table 6.2).

Average NQS estimates 〈̂σx〉
N

6 10 20 40
2 0.011 0.013 0.026 0.073

α 6 0.018 0.025 0.044 0.093
12 0.019 0.028 0.048 0.096

Table 6.1: Mean NQS estimates of 〈σx〉 statistics after 10 runs. Exact 〈σxi 〉 = 0.

NQS spin statistics RMS errors
N

6 10 14 20
〈σyi 〉 0.002 0.001 0.001 0.001
〈σzi 〉 0.005 0.005 0.005 0.006〈
σxij
〉

0.002 0.002 0.003 0.002〈
σyij
〉

0.002 0.002 0.003 0.002〈
σzij
〉

0.003 0.003 0.004 0.005

Table 6.2: Mean RMS errors of the spin statistics of the NQS for α = 2 after
10 independent runs per value. Exact statistics retrieved by diagonalization. In
correspondence with the results of table 6.1, errors are larger for larger values α
(results not shown).
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Multi/single flip samplers for N=40 XXX AFH model
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(a) Median error with single flips.
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(b) Median error with single/double flips.
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(c) Mean energy with single flips.
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(d) Mean energy with single/double flips.
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(e) Inset of figure 6.10c.
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(f) Inset of figure 6.10d.

Figure 6.10: Convergence of the local energy sampling in the S = 0-sector. Learning
rate η = 0.05 and decay factor γ = 0.997. Sampling on 25 CPUs each collecting 100
samples per iteration for hidden unit densities α = 2, 6, 12. Results averaged over
10 trials are nearly identical for the single and single/double flip samplers, for all
hidden unit densities.
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Sector sampling for N=40 XXX AFH model
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(a) Spin S = 0-sector sampling
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(b) Naive sampling

Figure 6.11: Errors in the local energy medialized over 10 runs. Learning rate
η = 0.05 and decay factor γ = 0.997. Sampling on 25 CPUs each collecting 100
samples per iteration for hidden unit densities α = 2, 6, 12. Results averaged over
10 trials are different depending on the sector that is sampled. The S = 0-sector
sampler (figure 6.11a) converges in less iterations to a lower minimum with a lower
variance.
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N

Figure 6.12: Median errors after 10 runs. Naive (not S = 0-sector) sampling method
with single/double flips. Learning rate η = 0.05 with decay rate γ = 0.997. Samples
per iteration equal to 10 ·N per CPU on 25 CPUs. 750 iterations total, local energy
averaged over last 50 optimizations (iter 701−750). Added expressibility only lowers
error for large system sizes.
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6.5.3 Non-stoquastic XXX AFH model

Training the NQS for the non-stoquastic AFH model (not transformed according to
the Marshall sign rule) leads to poor results. See figure 6.13 for N=40. In order to
investigate the quality of the learned sign structures, a converged (10−3 error) and
non-converged run (10−1 error) are compared. The signs of the wavefunctions are
checked according to Marshalls rule (equation 3.9). The global phase is estimated
by the phase of the Neel-ordered configuration

∣∣sNeel
〉

= |1,−1, 1, . . . ,−1〉, since
the ground state wavefunction has large norm at this configuration and thus a low
relative error in the phase of ‖

〈
sNeel

∣∣ΨW〉 ‖. For 108 uniformly sampled spin con-
figurations, the norm mass with correct sign is divided by the total sampled norm
mass (weighted average), resulting in M low

corr.sign = 0.9988 and Mhigh
corr.sign = 0.9964 for

the low and high error wavefunctions respectively.
Seeing as the non-stoquastic model fails to converge for large N , the breakdown

behaviour of the NQS is tested for varying amount of exact samples and α in figure
6.14. In this figure it is shown that the probability of retrieval decreases with system
size and increases with the number of samples. Also, for higher α, the retrieval rate
is lower: training the NQS to learn signs is hard and becomes harder for more
complex Ansatze.

In order to deepen the insight in the effects of non-stoquasticity, the comparison
is also made for the stoquastic and non-stoquastic N=6 XXX AFH model. Ten
separate NQS optimizations were performed for both modes using exact sampling
to rule out any Markov Chain issues. The results for the stoquastic model were
significantly better, sampling one order of magnitude lower errors in the ground
state energy after convergence (figure 6.15). The explanation for this can be found by
assessment of the quality of the wavefunctions: the overlaps of the (non-) stoquastic
NQS wavefunctions are 0.999± 0.003 and 0.99977± 6 · 10−5 respectively.

100 200 300 400 500 600 700

10-3 

10-2 

10-1 

100 

N=40 non-stoquastic XXX AFH model

Figure 6.13: Naive (not
∑

i si = 0 sector) MCMC sampling method with sin-
gle/double flips of the non-stoquastic N=40 AFH model. Learning rate η = 0.05
with decay rate γ = 0.997. Samples per iteration equal to 10 · N per CPU on 25
CPUs. Retrieval of the ground state is hard: out of twenty runs, only two converged
for α = 2.
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Breakdown of convergence for varying Nsamples and α
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Figure 6.14: Retrieval rate of the ground state energy after 25 runs of 1000 epochs for
system sizes N=6 to N=20. Learning rate η = 0.05 and γ = 0.997. NQS optimized
with exact samples. Extremely High Precision Retrieval (EHPR): relative error
εrel = ‖Eloc/Eexact − 1‖ < 10−6; High Precision retrieval (HPR): 10−6 ≤ εrel < 10−4;
Retrieval (R): 10−4 ≤ εrel < 10−2; Failure (F ): εrel > 10−2.
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Stoquasticity and the N=6 XXX AFH model
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(a) Convergence of the local energy.
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(b) Zoom of figure 6.15a.
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(c) Median errors as a function of iteration. Note that visual comparison of
the variance of both models is misleading due to the logarithmic scale.

Figure 6.15: Energy convergence of 10 runs on both the stoquastic and non-
stoquastic AFH model for 6 spins (transparent colors denote standard deviation).
Optimization done with α = 3 and 200 exact samples per optimization. Learning
rate η = 0.05 kept constant during run. S-matrix inverted exactly.
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6.5.4 Stoquastic connected models

The bad convergence results of the ground state energy in the non-stoquastic XXX
AFH model impose a limit to the scope of the Neural-net Quantum State algorithm,
in particular with regards to its application to a Quantum Boltzmann Machine.
Before delving further into results w.r.t. the QBM, more (stoquastic) models should
be tested in order to answer the question: “Suppose the QBM encounters only
stoquastic Hamiltonians in its learning process, can we trust the ground state spin
statistics of the NQS for these Hamiltonians?” The XXX AFH model gives only
a partial answer to this question: for nearest-neighbor, uniformly coupled, non-
frustrated Hamiltonians.

The performance of the NQS is further tested for systems of diagonalizable size,
with arbitrary stoquastic couplings wx,y,zi , wx,y,zij . The weights of one model are
shown in figure 6.16, dubbed the RSC (Random Stoquastic Connected) model9. The
sampled statistics of one run are shown in figure 6.18. Highly accurate convergence
to the true ground state energy is found for systems up to 20 spins in figure 6.19.
Of course, the RSC model is not representative of all stoquastic connected models.
However, the RSC model results indicate that fully connected stoquastic models of
non-diagonalizable size can in fact be learned by the NQS.

9The weights are not strictly random, but generated by an arbitrary but stoquastic and deter-
ministic recipe for different system sizes.
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Weights for the N=20 Random Stoquastic Connected (RSC) model
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Figure 6.16: In natural reading order, the: wxi , wyi , w
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the N=20 RSC model.
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RSC Hamiltonian statistics comparison

Exact statistics
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Figure 6.17: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) of the RSC Hamiltonian.
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Figure 6.18: The single site (top row) and correlation
(bottom row) x, y, z-statistics (respectively in the first
to third column) after NQS optimization. NQS op-
timized in 750 iterations by sampling the optimized
wavefunction on 25 CPUs with Nsamples = 200 samples
per CPU. RMS errors are of order O(10−3), except the
error in σy, which is of order O(10−4).
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Figure 6.19: Median errors of the RSC model after 10 runs. Local energy averaged
over the last 50 iterations. Learning rate η = 0.05 with decay parameter γ = 0.997.
Double flip sampling used for all measurements. Surprisingly, increasing the hidden
unit density increases the error of the ground state energy for the RSC model: a
simpler model works better for the fixed number of MC samples (10 ·N samples per
CPU on 25 CPUs). Moreover, the energy error is inversely related to the system size.
Comparing this figure to the stoquastic AFH model in figure 6.12, it is undecided
but probable that increasing the hidden unit density improves performance of the
NQS for N > 20 (see also table 6.4)

.
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6.5.5 Varying the number of MC samples

The results of figure 6.12 and 6.19 illustrate that simply increasing the hidden unit
density is not a guarantee for a more accurate NQS wavefunction. Increasing the
number of samples is another obvious way in which the accuracy of the sampled
gradients -and therefore the NQS- could be increased. In order to illustrate the
interplay between the amount of samples Nsamples and α, various experiments are
done for the stoquastic AFH and RSC model. The ranges of tested parameters are
α = 2, 6, 12 and Nsamples = 100, 200, 500 per CPU on ten CPUs for N=20 systems
with η = 0.05 and decay rate γ = 0.997. All experiments were repeated ten times
to produce averages and variances.

Increasing the number of samples does not decrease the number of iterations
needed to converge to a stable local energy (figure 6.20). However, as expected,
using more samples reduces the variance of the local energy (figure 6.21-6.22). As
was shown before in figure 6.12 (AFH) and figure 6.19 (RSC), increasing the hidden
unit density does not decrease errors beyond α = 6. This is again confirmed by
comparison of the α = 6, 12 results in this subsection.

The overlaps of the wavefunction w.r.t. results from exact diagonalization are
shown in tables 6.3 and 6.4.

Nsamples

1000 2000 5000
2 0.9973± 2e−4 0.9981± 1e−4 0.9987± 1e−4

α 6 0.9963± 2e−4 0.9974± 2e−4 0.9980± 1e−4
12 0.9959± 6e−5 0.9970± 6e−5 0.9976± 3e−5

Table 6.3: Overlaps with the true wavefunction for the AFH model. For N=20,
small hidden unit density still suffices to capture the ground state. Better overlaps
only by decreasing MC noise.

Nsamples

1000 2000 5000
2 0.9989± 2e−4 0.9993± 4e−4 0.9996± 2e−4

α 6 0.9996± 4e−4 0.9997± 2e−4 0.9999± 9e−5
12 0.9996± 3e−4 0.9998± 9e−5 0.9999± 3e−5

Table 6.4: Overlaps with the true wavefunction for the N=20 RSC model. At
variance with the AFH model (table 6.3), added expressibility results in marginally
increased overlaps with slightly lower variances. The RSC ground state is retrieved
with overall increased accuracy w.r.t. the AFH model.
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Convergence of the N=20 AFH (left) and RSC (right) models
averaged over 10 separate runs for varying Nsamples
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Figure 6.20: First 50 iterations for α = 12. Increasing the number of samples does
not reduce convergence time using Markov chains of length approximately 1%, 2%
and 5% the size of Hilbert space. Learning done on 10 CPUs.
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Figure 6.21: Last 50 iterations for α = 2.
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Figure 6.22: Last 50 iterations for α = 6. Variances between separate runs and
iterations are reduced for both models w.r.t. the α = 2 experiments in figure 6.21.
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6.5.6 Failure to converge without a spectral gap

The Rayleigh quotient is a problematic objective function for finding the ground
state wavefunction when the ground state energy is degenerate. In such cases, the
found ground state energy is found with small relative error, while other statistics
are not guaranteed to be correct. A demonstration is given in figure 6.23. This
Hamiltonian is generated by a converged Quantum Boltzmann Machine trained
w.r.t. a classical data density matrix generated by the asymmetric parity probability
distribution. This demonstrates that the QBM may fail to converge when a NQS is
used as a substitute for exact diagonalization if the target Hamiltonian has a small
spectral gap.

Failure to retrieve statistics of a non-gapped Hamiltonian
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Figure 6.23: The absolute values of differences in spin expectation values of the exact
ground state wavefunction and the NQS. In natural reading order the expectation
values in the x, y, z directions on the first row, and x, y, z correlations on the second
row. The spectral gap is of order 10−6, with a ground state energy of −10.879249.
Upon examination, the NQS was found to correspond to ΨW ≈ 1√

2
(Ψ1−Ψ2) with an

overlap of 0.9996, where Ψ1 and Ψ2 denote the ground state and first excited state.
The relative energy error is 10−5, but the correct 〈σx〉 statistics are not retrieved.
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6.6 Conclusion

The Neural-net Quantum State is able to capture the statistics and ground state
energy of stoquastic models with great precision for systems far beyond the scope of
exact diagonalization. While the accuracy of the statistics scales proportionally to
the hidden unit density α for the (stoquastic) XXX AFH model, the fully connected
RSC model shows different results. There is no one-size-fits all solution to produce
the statistics of randomly connected models with a given accuracy. Nevertheless,
for moderately sized (N ≈ 30) stoquastic models there is hope that the NQS can be
used to train a Quantum Boltzmann Machine even for small hidden unit densities
with errors on spin expectation values of order O(10−2).

For the non-stoquastic AFH model, the NQS fails to converge reliably. As dis-
cussed, this might relate to the sign-structure generalization problems explored [67].
Moreover, in this paper it has been shown that the performance to learn sign struc-
ture heavily relies on neural-net design. Particularly Convolutional Neural Networks
seem to outperform Feed-forward Neural Networks and RBMs.

Moreover, the rate of convergence of the NQS does not depend on the amount
of samples. In order to maximize efficiency, the amount of samples as well as the
hidden unit density should therefore be increased adaptively.

A requirement left out of previous discussions is the smoothness of the prob-
ability distribution |ΨW |2: for Hamiltonians with ground states that have heavily
concentrated probability mass (“spiked” ground state wavefunctions), MCMC is
likely to fail. While this did not prove to be a problem for the tested Hamilto-
nians, adherance to this condition can, strictly speaking, not be ensured for QBM
Hamiltonians with random couplings. The smoothness of the NQS proved to be par-
ticularly important for the estimation of quantum statistics. The estimator for the

σx statistics is 〈̂σxi 〉 =
∑

s∈|ΨW |2
ΨW (Fis)
ΨW (s)

. The ground state of the Heisenberg model
has only non-zero norm for zero-sum spin configuration basis states. Therefore, a
perfect NQS would be parameterized such that ΨW(Fis) = 0 for all s ∈ |ΨW |2. This
requires a stepping behaviour from the neural net: a large -strictly speaking infinite-
difference in output for inputs separated by a Hamming distance of 1. For systems
of size N=6 this can be done with O(10−2) errors, while for N=40 systems, the
error approaches O(10−1). While possibly an expressibility issue, the problem was
shown not to be solved by increasing the hidden unit density. In order to increase
the effective Hamming distance between states with large norm difference, different
architectures or data preprocessing strategies (such as basis transformations) should
be researched.



Chapter 7

Results

As shown, the Quantum Boltzmann Machine can be trained using only ground state
statistics, in what is called the “rank-1 approximation”. The final step is to generate
these statistics numerically, using the Neural Quantum State method, so that the
QBM can be trained for Hamiltonians beyond the scope of exact diagonalization.
The total pipeline is visualized in figure 7.1.

Figure 7.1: The pipeline for training a QBM with usage of ground state statistics,
calculated from the Neural Quantum State. W parameterizes the QBM Hamilto-
nian, calligraphic W the NQS, R[ΨW ] denotes the Rayleigh quotient and 〈Ok〉 the
expectation value of the variational derivative w.r.t. network parameter k. The
inner loop is repeated NNQS times for every outer loop update.

In the rank-1 approximation, the statistics are degenerate: the ground states
of many Hamiltonians may correspond to the same statistics. Performing quantum
state tomography with the QBM is therefore impossible in the rank-1 approximation.
However, the QBM could still be used as a generative model. The hypothesis is

85
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that the QBM, with its inherent quantum features, outperforms classical generative
models. The QBM has been shown to outperform the BM for classical data (coming
from retinal cells of a salamander) [54].

The source of the data statistics can be either quantum or classical, coming
from any source. However, smoothness of the variational ground state wavefunction
should be taken into account. Although there is no one-to-one correspondence, data
sets that are very biased to a small number of statistics are probable to be generated
by non-uniform ground state wavefunctions of the QBM parameterized Hamiltonian.
The non-uniformity can be a problem in terms of expressibility of the Ansatz, but
more importantly for the ergodicity of MCMC in the training process.

In particular for small absolute value spin statistics on the x and y-axis, which
are sampled by evaluating products of local wavefunctions (see equation 5.41), the
Restricted Boltzmann Machine Ansatz might suffer from the problem explored in
section 6.5.1. In any case, the quantum statistics are the most difficult to estimate
for the NQS: the error on these estimates will determine the quality of the model
statistics and quantum likelihood L.

Moreover, the NQS often fails when it has to learn a sign structure 6.5.3). There-
fore, a mechanism should be put in place to keep the QBM weights W from forming
a non-stoquastic Hamiltonian.

7.1 Stoquastic Wall

Checking for stoquasticity is computationally cheap, since it only requires that
wxi < 0 and wxij ≤ −|w

y
ij| for all i, j. The Stoquastic Wall ensures that the QBM

Hamiltonian is stoquastic, so that the NQS is not tasked with learning a sign struc-
ture. If the QBM proposes a change in weights wxij and wyij so that the Wall is
breached, the learning rate for the individual weights are lowered so that the weights
lie exactly on the barrier. This implies

wxij + ε∆wxij = −|wyij + ε∆wyij| (7.1)

ε =
±wyij − wxij

∆wxij ∓∆wyij
, (7.2)

where the ε ≥ 0 solution corresponds to the correct barrier. This is also done in a
trivial manner for the wx weights. The Stoquastic Wall requires negligible computing
time relative to the computation of model statistics.

7.2 Experimental parameters

Combining the Quantum Boltzmann Boltzmann Machine and the Neural Quantum
State algorithms results in a large number of hyperparameters. These parameters are
tuned using experience from results in previous chapters. This includes a learning
rate for the NQS of η = 0.05 (not to be confused with the data density matrix η)
with decay parameter γ = 0.996, NNQS = 750 and hidden unit density α < 6. Due
to the stochastic nature of the NQS spin statistics, the QBM learning rate is kept at
a conservative ε = 0.02. The amount of required QBM iterations NQBM is monitored
manually by inspection of the likelihood curve L.
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7.2.1 Stoquastic Wall

The target Hamiltonian is stoquastic for positive data density matrices η ≥ 0. There-
fore, the Stoquastic Wall is expected not to be a limiting factor for classical data
although the concern of identifiability (section 5.3.2) still plays a role. The QBM
weights WQBM are initialized in the stoquastic region. This includes the Marshall-
Peierls sign rule Heisenberg model as possibility, so that the initial Hamiltonian has
large spectral gap and its gradients are approximated accurately.

7.3 Results

The RMS errors in expectation values of elements Hr of the QBM Hamiltonian are
considered separately, e.g. for k = xx:

ζxx ≡
√

1

2N(N − 1)

∑
j>i

[ 〈
σxi σ

x
j

〉
η
−
〈
σxi σ

x
j

〉
ρ

]2

. (7.3)

7.3.1 Proof of concept: N=10 neuronal data

In order to demonstrate the QBM can be trained with the NQS for small (diagonal-
izable) classical problems, we turn to a neuronal data set. The data statistics are
extracted from retinal neurons of a salamander. Six experiments are done in order
to illustrate the effects of the approximations done by QBM+NQS learning:

• Exact rank-10 learning with/without barrier,

• Exact rank-1 learning with/without barrier,

• NQS rank-1 learning with/without barrier.
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Figure 7.2: Data statistics 〈σxi 〉, 〈σ
y
i 〉, 〈σzi 〉 (top row);
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〉
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j

〉
,
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tom row).
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RMS error in statistics comparison
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Figure 7.3: One QBM iteration corresponds to 750 NQS updates with α = 2 and
Nsamples = 500 on a single CPU. QBM and NQS learning rates are ε = 0.02 and
η = 0.05 respectively. QBM initialized with XXX Heisenberg model weights for
all runs. Note that the rank-10 algorithm does not run into degeneracy spikes.
Moreover, the NQS fails to converge and finds incorrect statistics multiple times
without the barrier. This is confirmed by spikes in the likelihood (see figure 7.4).
The barrier fixes this problem, but leads to an overall worse solution, particularly
for
〈
σxi σ

x
j

〉
and

〈
σyi σ

y
j

〉
, which can therefore be ascribed to model mismatch.
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Rank-1 likelihoods comparison
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Figure 7.4: The peaks to 100 are artificial: when the likelihood was found to be
positive, it was set manually to this value. Positive likelihoods indicate failure to
converge (the ground state energy is overestimated, see equation 5.53). The barrier
leads to worse solutions (lower likelihood) in both the exact and NQS modi. Keep
in mind that the plot is logarithmic, so that the noise level may be overestimated
for higher values of L when inspected visually.
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7.3.2 N=30 neuronal data

The NQS is only detrimental for system of non-diagonalizable size. A fully connected
Hamiltonian for 30 spin-1

2
particles is represented by a dense matrix of O(1018)

elements, beyond the reach of exact diagonalization on moderately sized computing
clusters. The neuronal salamander data set for N=10 is now extended to 30 neurons.

In figure 7.7a, the likelihood can be seen to converge smoothly to a maximum.
However, two peaks are shown at iteration 37 and 117. These peaks are preceded by
a dip, which indicates that the NQS did not converge properly to the ground state,
and subseqently sampled the energy of an excited state. The peaks in this figure
correspond to the peaks in the RMS errors in figure 7.6. As was the case for N=10
salamander data with barrier, the classical RMS errors are significantly lower.

The oscillatory behaviour of RMS values was found to be much more outspoken
for the non-stoquastic QBM (figure 7.6a).

Regenerating data statistics
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(a) Neuronal data statistics.
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(b) QBM (NQS with barrier) statistics.

Figure 7.5: The statistics shown in both subfigures (from top left to bottom right)
are expectation values 〈σxi 〉, 〈σ

y
i 〉, 〈σzi 〉,

〈
σxi σ

x
j

〉
,
〈
σyi σ

y
j

〉
and

〈
σzi σ

z
j

〉
. After 350 QBM

updates, the data spin statistics are regenerated by the model rank-1 density matrix
with total RMS = 0.048. One QBM iteration corresponds to 750 NQS updates
with α = 2 and Nsamples = 100 on 30 CPUs each update. QBM and NQS learning
rates are ε = 0.02 and η = 0.05 respectively. QBM initialized with XXX Heisenberg
model weights.
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RMS errors
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Figure 7.6: The RMS errors ζk and as a function of QBM iteration. The results of
figure 7.5b correspond to the final iteration in figure 7.6b. Note that the classical
statistics have significantly lower RMS errors. In addition, the oscillatory behaviour
of RMS values in figure 7.6b -while the likelihood has converged- indicates that the
Hamiltonian is degenerate.

Rank-1 likelihoods comparison
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Figure 7.7: No positive likelihoods are encountered, which indicates that the ground
state energy is found with reasonable accuracy. Keep in mind that the plot is
logarithmic, so that the noise level may be overestimated for higher values of L
when inspected visually.

7.4 Conclusion

The QBM was trained with the NQS for N=10 and N=30 classical data sets, origi-
nating from recordings of retinal cells of a salamander.

The problems in the rank-1 and NQS modi were all due to a small spectral
gap. For the rank-1 modus the problem is simply that the gradient cannot be
approximated by only ground state statistics due to a small spectral gap. In addition
to this, the NQS modus is sensitive to sampling wrong statistics (converging to a
linear combination of ground and excited states) for small spectral gap Hamiltonians:
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it samples the wrong gradient when the rank-1 approximation no longer holds.
Although the degeneracy issue seems less apparent for the barrier solutions at

N=10, the oscillatory behaviour of RMS errors of the N=30 QBM indicates that the
encountered Hamiltonians have small spectral gap.

For the N=30 non-stoquastic (no barrier) QBM, the oscillations were much more
prevalent. Two explanations for this are possible. The first is that this QBM run
encountered more degenerate Hamiltonians. The second is that the NQS is more
sensitive to the spectral gap for non-stoquastic Hamiltonians. The peaks in the
likelihood (figure 7.7a) indicate that the NQS often sampled an inaccurate gradient.
As discussed, it is unclear if this is failure of the NQS to converge, or due to failure
of the rank-1 approximation itself1. However, when compared to the catastrophic
failure to converge for the non-stoquastic Heisenberg model (section 6.5.3), it is
surprising that the NQS is still able to perform quite well for N=30 non-stoquastic
full connected Hamiltonians.

Although the N=30 QBM is not expected to outperform a classical BM with
current RMS errors, a comparison could be done by e.g. determining the predictive
powers of the classical and quantum BM, when trained on a subset of retinal activity
data.

This leads us to the conclusion that the answer to the central research question
posed in the introduction of this thesis is a provisional ”Yes, but with O(10−1) errors
in quantum statistics”. Further research is needed to determine if different NQS
architectures and different data sets might be suitable to bring the RMS error down.
Furthermore, the stoquastic wall was shown to impede the N=10 QBM considerably.
Alleviating the NQS-QBM of the stoquastic wall requires more investigation w.r.t.
learning neural-net representations of signed wavefunctions.

1Or even a combination of both.



Chapter 8

Outlook

Training Quantum Boltzmann Machines with classical software requires a lot of
resources. For systems with dozens of qubits, the complete spectrum of a density
matrix cannot be calculated. Using the rank-1 approximation, the required spectral
information is truncated to only the ground state. This ground state was found by
the variational optimization of a Neural Quantum state. Since the parameterization
of the QBM Hamiltonian is not restricted in any way, the NQS must be able to
represent any ground state of 2-local spin Hamiltonians with external fields in x, y
and z-directions.

However, the NQS was shown to fail for small spectral gap and the non-stoquastic
Heisenberg model. For non-stoquastic fully connected Hamiltonians, however, the
NQS performed surprisingly well for N=30. The exact reason for worse convergence
of the NQS is still unclear. Although ground states of stoquastic (gapped) Hamil-
tonians were found reliably, the class of non-stoquastic Hamiltonians for which the
NQS fails might be narrowed down further.

When the NQS was applied to the QBM, the problem with non-stoquastic Hamil-
tonians was circumvented by adding a stoquastic wall. However, gappedness can
not be controlled. For this reason, the large QBM could not be trained accurately
with the rank-1 approximation. Moreover, the restriction imposed by the barrier
seems to reduce the (best possible) quality of the QBM representation significantly.

Determining if a Hamiltonian is gapped is an open problem in physics. In par-
ticular, the problem is known to be undecidable [75]: “There exists no algorithm
to determine whether an arbitrary model is gapped or gapless, and . . . there exist
models for which the presence or absence of a spectral gap is independent of the
axioms of mathematics.” A general algorithm to steer the QBM away from gapless1

Hamiltonians requires a significant breakthrough. Additionally, the considered clas-
sical data sets showed long-range correlations in their classical/quantum statistics.
Long-range correlations are often linked to quantum phase transitions and gapless-
ness, which are notoriously hard to capture with an NQS. See [76] for a discussion
particularly related to quantum criticality and the performance of an NQS with an
RBM ansatz. Getting rid of the rank-1 approximation entirely without quantum
hardware might be possible in the future, seeing as research is also done to design
algorithms/architectures to embed mixed states with neural networks [77].

Irrespective of gappedness and criticality, the accuracy of the quantum statistics

1Note that in [75], gappedness is defined as having a continuous spectrum above the ground
state energy in the thermodynamic limit in addition to the absence of a spectral gap.
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sampled with the NQS was found to deteriorate significantly with increasing system
sizes for the 1D Heisenberg model. This problem might be alleviated by experi-
menting with different architectures viz. FFNNs and Deep Boltzmann Machines.
Although the goal in this thesis was to train a QBM instead of performing direct
tomography, inspiration for improving the quality of quantum state embeddings and
the statistics inferred from them might be found in NQS tomography literature such
as [78] and [60].

As was discussed in the Introduction, ideally one would like to perform quantum
algorithms on quantum hardware. While systems with dozens of spins are still
out of reach, variational wavefunction optimization has been performed on quantum
hardware using Variational Quantum Eigensolvers (VQE ) [12]. In the QBM learning
algorithm, the VQE would be a hardware replacement of the Neural Quantum State.
Similar to classical neural nets, the representative power of quantum circuits depends
on the architecture. Moreover, the efficacy of quantum circuits also depends on
their ability to control noise. The design of noise-resilient quantum circuits with
great representative power is an ongoing field of research [79]. Moreover, efforts
are made to extend quantum hardware implementations of ground state VQEs to
learning thermal (mixed) states [80]. Such a device could be the ultimate solution
for training a QBM on hardware in the future.



Appendix A

Proof for Riemannian steepest
descent

Set dw = εa, and search for the a that minimizes

L(w + dw) = L(w) + ε∇L(w)Ta (A.1)

under the constraint
|a|2 =

∑
gijaiaj = aTGa = 1. (A.2)

The Lagrangean equation for this constraint optimization problem becomes

∂

∂ai

(
∇L(w)Ta− λaTGa

)
= 0. (A.3)

Component-wise this gives the equation

∇L(w)i = λ
∂

∂ai

∑
i,j

aigijaj (A.4)

= λ(
∑
j

gijaj +
∑
j

ajgij) (A.5)

= 2λ
∑
j

gijaj (A.6)

= 2λGi-th row · a. (A.7)

Vector-wise this reduces to
∇L(w) = 2λGa, (A.8)

or

a =
1

2λ
G−1∇L(w), (A.9)

where λ is determined from the constraint.
The natural gradient of L in Riemannian space is denoted

∇̃L(w) = G−1∇L(w). (A.10)
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Appendix B

N=100 XXX AFH model
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N=100 (stoquastic) XXX AFH model

iteration

Figure B.1: Energy error decreasing smoothly as a function of iteration for the
stoquastic AFH model. Learning rate η = 0.05 with decay factor γ = 0.997. Spin∑

i si = 0-sector sampling with single flips on 40 CPUs each collecting 100 samples
per optimization. α = 6 reduces the error in the energy significantly.
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Figure B.2: In natural reading order, the: 〈σxi 〉, 〈σ
y
i 〉, 〈σzi 〉,

〈
σxi σ

x
j

〉
,
〈
σyi σ

y
j

〉
and〈

σzi σ
z
j

〉
estimations of statistics of the NQS for α = 3 after optimization. Sample

averages of the combination of 25 CPUs collecting 100 samples each. Note that
these results are not done with a S = 0 sampler, since this would result in bad

quantum statistics. Note that 〈̂σx〉 ≈ 0.2 (while the exact 〈σx〉 = 0), indicating
that this quantum statistic is particularly hard to learn for the NQS. These results
are gathered under an hour of user time on ordinary cluster hardware (E5-2698 @
2.20GHz).
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[26] K. Życzkowski et al. “Dynamics of quantum entanglement”. In: Physical Re-
view A 65.1 (2001), p. 012101.

[27] J. Eisert, M. Cramer, and M. B. Plenio. “Colloquium: Area laws for the en-
tanglement entropy”. In: Rev. Mod. Phys. 82 (1 Feb. 2010), pp. 277–306. doi:
10.1103/RevModPhys.82.277. url: https://link.aps.org/doi/10.1103/
RevModPhys.82.277.

[28] R. Horodecki et al. “Quantum entanglement”. In: Reviews of modern physics
81.2 (2009), p. 865.

[29] J. P. Keating and F. Mezzadri. “Entanglement in Quantum Spin Chains, Sym-
metry Classes of Random Matrices, and Conformal Field Theory”. In: Phys.
Rev. Lett. 94 (5 Feb. 2005), p. 050501. doi: 10.1103/PhysRevLett.94.

050501. url: https://link.aps.org/doi/10.1103/PhysRevLett.94.
050501.

[30] S. Chakravarty, B. I. Halperin, and D. R. Nelson. “Low-temperature behav-
ior of two-dimensional quantum antiferromagnets”. In: Physical review letters
60.11 (1988), p. 1057.

https://github.com/mcompen/NeuralQuantumState.jl
https://github.com/mcompen/NeuralQuantumState.jl
https://doi.org/10.11429/ppmsj1919.22.4_264
http://eudml.org/doc/59231
http://eudml.org/doc/59231
https://doi.org/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://link.aps.org/doi/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://link.aps.org/doi/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevLett.94.050501
https://doi.org/10.1103/PhysRevLett.94.050501
https://link.aps.org/doi/10.1103/PhysRevLett.94.050501
https://link.aps.org/doi/10.1103/PhysRevLett.94.050501


100 BIBLIOGRAPHY

[31] A. Auerbach. Graduate Texts in Contemporary Physics: Interacting Electrons
and Quantum Magnetism. 1994.

[32] L. Capriotti et al. “Quantum Effects and Broken Symmetries in Frustrated
Antiferromagnets”. In: (2000).

[33] C. D. Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

[34] S. R. White. “Density-matrix algorithms for quantum renormalization groups”.
In: Physical Review B 48.14 (1993), p. 10345.

[35] H. A. Bethe. “Statistical theory of superlattices”. In: Proceedings of the Royal
Society of London. Series A-Mathematical and Physical Sciences 150.871 (1935),
pp. 552–575.

[36] M. Karbach et al. “Introduction to the Bethe Ansatz I”. In: Computers in
Physics 11.1 (1997), pp. 36–43. doi: 10.1063/1.4822511.

[37] N. Metropolis and S. Ulam. “The monte carlo method”. In: Journal of the
American statistical association 44.247 (1949), pp. 335–341.

[38] N. Metropolis et al. “The beginning of the Monte Carlo method”. In: Los
Alamos Science 15.584 (1987), pp. 125–130.

[39] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. New
York: Cambridge University Press, 2002. isbn: 0521642981.

[40] W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo
in practice. Chapman and Hall/CRC, 1995.

[41] D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statis-
tical Physics. 4th ed. Cambridge University Press, 2014.

[42] D. A. Levin and Y. Peres. Markov chains and mixing times. Vol. 107. American
Mathematical Soc., 2017.

[43] M. K. Cowles and B. P. Carlin. “Markov chain Monte Carlo convergence di-
agnostics: a comparative review”. In: Journal of the American Statistical As-
sociation 91.434 (1996), pp. 883–904.

[44] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[45] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
networks 61 (2015), pp. 85–117.

[46] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943),
pp. 115–133.

[47] D. O. Hebb. The organization of behavior. New York: Wiley, 1949.

[48] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. “A learning algorithm for
Boltzmann machines”. In: Cognitive science 9.1 (1985), pp. 147–169.

[49] G. E. Hinton. “Training products of experts by minimizing contrastive diver-
gence”. In: Neural computation 14.8 (2002), pp. 1771–1800.

[50] H. C. Nguyen, R. Zecchina, and J. Berg. “Inverse statistical problems: from the
inverse Ising problem to data science”. In: Advances in Physics 66.3 (2017),
pp. 197–261.

https://doi.org/10.1063/1.4822511


BIBLIOGRAPHY 101

[51] T. J. Sejnowski. “Higher-order Boltzmann machines”. In: AIP Conference Pro-
ceedings. Vol. 151. 1. AIP. 1986, pp. 398–403.

[52] X. Gao and L.-M. Duan. “Efficient representation of quantum many-body
states with deep neural networks”. In: Nature communications 8.1 (2017),
p. 662.

[53] M. Suzuki. “Relationship between d-Dimensional Quantal Spin Systems and
(d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Sys-
tematic Approximants of the Partition Function and Spin Correlations”. In:
Progress of Theoretical Physics 56.5 (Nov. 1976), pp. 1454–1469.

[54] H. J. Kappen. “Learning quantum models from quantum or classical data”.
In: arXiv preprint arXiv:1803.11278 (2019).

[55] E. Carlen. “Trace inequalities and quantum entropy: an introductory course”.
In: Entropy and the quantum 529 (2010), pp. 73–140.
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